Distributions, sea-to-air fluxes, and biological consumption of carbon monoxide in the Bohai and Yellow Seas during winter

IF 2.7 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Marine Systems Pub Date : 2024-06-01 DOI:10.1016/j.jmarsys.2024.103994
Lin Yang , Jiayu Chen , Jing Zhang , Gui-Peng Yang , Bin Yang
{"title":"Distributions, sea-to-air fluxes, and biological consumption of carbon monoxide in the Bohai and Yellow Seas during winter","authors":"Lin Yang ,&nbsp;Jiayu Chen ,&nbsp;Jing Zhang ,&nbsp;Gui-Peng Yang ,&nbsp;Bin Yang","doi":"10.1016/j.jmarsys.2024.103994","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon monoxide (CO) concentrations in the atmosphere and ocean are mainly influenced by anthropogenic inputs, abiotic photoproduction, biogenic sources, and bacterial consumption. This study, for the first time, investigated the distributions, sea-to-air fluxes, and microbial consumption rates of CO in the Bohai Sea (BS) and the Yellow Sea (YS) in winter to identify the main factors controlling CO distributions in both the atmosphere and seawater in colder temperature. Atmospheric CO mixing ratios ([CO]<sub>atm</sub>) and the concentrations of CO in surface seawater ([CO]<sub>surf</sub>) ranged from 176.8 to 1245.8 ppbv (mean value: 551.4 ± 214 ppbv) and from 0.49 to 3.1 nmol L<sup>−1</sup> (mean value: 0.98 ± 0.55 nmol L<sup>−1</sup>), respectively. In addition, the spatial distribution of [CO]<sub>atm</sub> and [CO]<sub>surf</sub> showed that anthropogenic sources dominated the distribution of [CO]<sub>atm</sub>, but abiotic photoproduction processes were the main influencers of the distribution of [CO]<sub>surf</sub>. The surface water at most sampling stations was supersaturated with CO, with a mean saturation factor of 1.9, and the sea-to-air fluxes of CO were estimated to range from −13.88 to 123.88 nmol m<sup>−2</sup> h<sup>−1</sup> (12.59 ± 21.32 nmol m<sup>−2</sup> h<sup>−1</sup>), suggesting that the BS and the YS were the source of atmospheric CO, <!--> <!-->and were estimated to contribute 0.009% to 1.4% to the global ocean emission. Microbial consumption experiments indicated that the microbial CO consumption rate constants (<em>K</em><sub>bio</sub>) ranged from 0.15 to 2.14 h<sup>−1</sup>, and showed that CO concentrations decreased exponentially with incubation time, suggesting that anaerobic CO consumption would limit CO accumulation in winter, thereby affecting the flux of [CO]<sub>surf</sub> to [CO]<sub>atm</sub>.</p></div>","PeriodicalId":50150,"journal":{"name":"Journal of Marine Systems","volume":"245 ","pages":"Article 103994"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924796324000320","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon monoxide (CO) concentrations in the atmosphere and ocean are mainly influenced by anthropogenic inputs, abiotic photoproduction, biogenic sources, and bacterial consumption. This study, for the first time, investigated the distributions, sea-to-air fluxes, and microbial consumption rates of CO in the Bohai Sea (BS) and the Yellow Sea (YS) in winter to identify the main factors controlling CO distributions in both the atmosphere and seawater in colder temperature. Atmospheric CO mixing ratios ([CO]atm) and the concentrations of CO in surface seawater ([CO]surf) ranged from 176.8 to 1245.8 ppbv (mean value: 551.4 ± 214 ppbv) and from 0.49 to 3.1 nmol L−1 (mean value: 0.98 ± 0.55 nmol L−1), respectively. In addition, the spatial distribution of [CO]atm and [CO]surf showed that anthropogenic sources dominated the distribution of [CO]atm, but abiotic photoproduction processes were the main influencers of the distribution of [CO]surf. The surface water at most sampling stations was supersaturated with CO, with a mean saturation factor of 1.9, and the sea-to-air fluxes of CO were estimated to range from −13.88 to 123.88 nmol m−2 h−1 (12.59 ± 21.32 nmol m−2 h−1), suggesting that the BS and the YS were the source of atmospheric CO,  and were estimated to contribute 0.009% to 1.4% to the global ocean emission. Microbial consumption experiments indicated that the microbial CO consumption rate constants (Kbio) ranged from 0.15 to 2.14 h−1, and showed that CO concentrations decreased exponentially with incubation time, suggesting that anaerobic CO consumption would limit CO accumulation in winter, thereby affecting the flux of [CO]surf to [CO]atm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
渤海和黄海冬季一氧化碳的分布、海气通量和生物消耗量
大气和海洋中的一氧化碳(CO)浓度主要受人为输入、非生物光产、生物源和细菌消耗的影响。本研究首次调查了渤海和黄海冬季一氧化碳的分布、海气通量和微生物消耗率,以确定控制低温条件下大气和海水中一氧化碳分布的主要因素。大气中的 CO 混合比([CO]atm)和表层海水中的 CO 浓度([CO]surface)分别为 176.8 至 1245.8 ppbv(平均值:551.4 ± 214 ppbv)和 0.49 至 3.1 nmol L-1(平均值:0.98 ± 0.55 nmol L-1)。此外,[CO]大气和[CO]海面的空间分布表明,人为来源主导了[CO]大气的分布,但非生物光产生过程是[CO]海面分布的主要影响因素。大多数采样站的表层水CO过饱和,平均饱和系数为1.9,CO的海气通量估计为-13.88至123.88 nmol m-2 h-1(12.59 ± 21.32 nmol m-2 h-1),表明BS和YS是大气CO的来源,估计占全球海洋排放量的0.009%至1.4%。微生物消耗实验表明,微生物 CO 消耗速率常数(Kbio)在 0.15 至 2.14 h-1 之间,并表明 CO 浓度随培养时间呈指数下降,这表明厌氧 CO 消耗将限制冬季 CO 的积累,从而影响 [CO]surf 至 [CO]atm 的通量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Marine Systems
Journal of Marine Systems 地学-地球科学综合
CiteScore
6.20
自引率
3.60%
发文量
81
审稿时长
6 months
期刊介绍: The Journal of Marine Systems provides a medium for interdisciplinary exchange between physical, chemical and biological oceanographers and marine geologists. The journal welcomes original research papers and review articles. Preference will be given to interdisciplinary approaches to marine systems.
期刊最新文献
Internal tidal dynamics and associated processes at highly supercritical slopes in Banda Sea: Lessons from the oceanic island of Ambon, eastern Indonesia Fine-scale phytoplankton community transitions in the oligotrophic ocean: A Mediterranean Sea case study Summertime nutrient transports in the coastal areas of the Western Northern Yellow Sea Variability of inherent optical properties of seawater in relation to the concentration and composition of suspended particulate matter in the coastal Arctic waters of western Spitsbergen Modeling the structure changes of cold-water copepods Calanus euxinus population under the influence of the black sea depths deoxygenation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1