Climate change fluctuations can increase population abundance and range size

IF 7.6 1区 环境科学与生态学 Q1 ECOLOGY Ecology Letters Pub Date : 2024-06-06 DOI:10.1111/ele.14453
Jane Shaw MacDonald, Frithjof Lutscher, Yves Bourgault
{"title":"Climate change fluctuations can increase population abundance and range size","authors":"Jane Shaw MacDonald,&nbsp;Frithjof Lutscher,&nbsp;Yves Bourgault","doi":"10.1111/ele.14453","DOIUrl":null,"url":null,"abstract":"<p>Climate change threatens many species by a poleward/upward movement of their thermal niche. While we know that faster movement has stronger impacts, little is known on how fluctuations of niche movement affect population outcomes. Environmental fluctuations often affect populations negatively, but theory and experiments have revealed some positive effects. We study how fluctuations around the average speed of the niche impact a species' persistence, abundance and realized niche width under climate change. We find that the outcome depends on how fluctuations manifest and what the relative time scale of population growth and climate fluctuations are. When populations are close to extinction with the average speed, fluctuations around this average accelerate population decline. However, populations not yet close to extinction can increase in abundance and/or realized niche width from such fluctuations. Long-lived species increase more when their niche size remains constant, short-lived species increase more when their niche size varies.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14453","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14453","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change threatens many species by a poleward/upward movement of their thermal niche. While we know that faster movement has stronger impacts, little is known on how fluctuations of niche movement affect population outcomes. Environmental fluctuations often affect populations negatively, but theory and experiments have revealed some positive effects. We study how fluctuations around the average speed of the niche impact a species' persistence, abundance and realized niche width under climate change. We find that the outcome depends on how fluctuations manifest and what the relative time scale of population growth and climate fluctuations are. When populations are close to extinction with the average speed, fluctuations around this average accelerate population decline. However, populations not yet close to extinction can increase in abundance and/or realized niche width from such fluctuations. Long-lived species increase more when their niche size remains constant, short-lived species increase more when their niche size varies.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候变化的波动会增加种群数量和分布范围。
气候变化会使许多物种的热生态位向极地/向上移动,从而对其造成威胁。虽然我们知道更快的移动会产生更大的影响,但对生态位移动的波动如何影响种群结果却知之甚少。环境波动通常会对种群产生负面影响,但理论和实验也揭示了一些积极影响。我们研究了在气候变化下,生态位平均速度的波动如何影响物种的持久性、丰度和实现的生态位宽度。我们发现,结果取决于波动的表现形式以及种群增长和气候波动的相对时间尺度。当种群以平均速度接近灭绝时,围绕平均速度的波动会加速种群的衰退。然而,尚未濒临灭绝的种群可以从这种波动中增加丰度和/或实现生态位宽度。当生态位大小保持不变时,长寿物种的数量增加较多;当生态位大小变化时,短寿物种的数量增加较多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
期刊最新文献
Ant impacts on global patterns of bird elevational diversity Phylogeny structures species' interactions in experimental ecological communities Cumulative adversity and survival in the wild Disturbances can facilitate prior invasions more than subsequent invasions in microbial communities BioEncoder: A metric learning toolkit for comparative organismal biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1