{"title":"Preparation of white rot fungal inoculum and its application to bioremediation of chlorimuron-ethyl-contaminated soil.","authors":"Xiangyu Shi, Xin Wang, Ling Ge, Wenrui Liu, Mengqin Yao, Jia Bao","doi":"10.1007/s10529-024-03497-w","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorimuron-ethyl is currently the primary herbicide used for chemical weed control in a soybean field. In this study, a solid microbial inoculum (corn stalk-white rot fungus (W-1)) was prepared for the remediation of farmland soil contaminated by chlorimuron-ethyl. Firstly, the preparation method of the microbial inoculum was studied. Secondly, the degradation rate of the chlorimuron-ethyl in the ground by the solid microbial inoculum is improved by optimizing the proportion of the protective agent. Then the effects of applying solid microbial inoculum, free bacteria and corn straw on the degradation rate of chlorimuron-ethyl in soil were weighed. Finally, Illumina MiSeq sequencing was used to measure the composition and diversity of bacterial and fungal communities in the ground before and after using microbial inoculum. The degradation rate of chlorimuron-ethyl in soil by solid microbial inoculum was 84.87% after 20 d using corn straw as the support, room temperature drying, 4% Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> as the protective drying agent, and 1%(w) dextrin as the ultraviolet protective agent. Inoculation of white rot fungi could significantly affect the community structure of bacteria and fungi in the soil, making the chlorimuron-ethyl degrading communities become the dominant communities and playing an essential role in the degradation of chlorimuron-ethyl. The results showed that using solid microbial inoculum was an effective way to repair farmland soil polluted by chlorimuron-ethyl.</p>","PeriodicalId":8929,"journal":{"name":"Biotechnology Letters","volume":" ","pages":"767-780"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-024-03497-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chlorimuron-ethyl is currently the primary herbicide used for chemical weed control in a soybean field. In this study, a solid microbial inoculum (corn stalk-white rot fungus (W-1)) was prepared for the remediation of farmland soil contaminated by chlorimuron-ethyl. Firstly, the preparation method of the microbial inoculum was studied. Secondly, the degradation rate of the chlorimuron-ethyl in the ground by the solid microbial inoculum is improved by optimizing the proportion of the protective agent. Then the effects of applying solid microbial inoculum, free bacteria and corn straw on the degradation rate of chlorimuron-ethyl in soil were weighed. Finally, Illumina MiSeq sequencing was used to measure the composition and diversity of bacterial and fungal communities in the ground before and after using microbial inoculum. The degradation rate of chlorimuron-ethyl in soil by solid microbial inoculum was 84.87% after 20 d using corn straw as the support, room temperature drying, 4% Ca3(PO4)2 as the protective drying agent, and 1%(w) dextrin as the ultraviolet protective agent. Inoculation of white rot fungi could significantly affect the community structure of bacteria and fungi in the soil, making the chlorimuron-ethyl degrading communities become the dominant communities and playing an essential role in the degradation of chlorimuron-ethyl. The results showed that using solid microbial inoculum was an effective way to repair farmland soil polluted by chlorimuron-ethyl.
期刊介绍:
Biotechnology Letters is the world’s leading rapid-publication primary journal dedicated to biotechnology as a whole – that is to topics relating to actual or potential applications of biological reactions affected by microbial, plant or animal cells and biocatalysts derived from them.
All relevant aspects of molecular biology, genetics and cell biochemistry, of process and reactor design, of pre- and post-treatment steps, and of manufacturing or service operations are therefore included.
Contributions from industrial and academic laboratories are equally welcome. We also welcome contributions covering biotechnological aspects of regenerative medicine and biomaterials and also cancer biotechnology. Criteria for the acceptance of papers relate to our aim of publishing useful and informative results that will be of value to other workers in related fields.
The emphasis is very much on novelty and immediacy in order to justify rapid publication of authors’ results. It should be noted, however, that we do not normally publish papers (but this is not absolute) that deal with unidentified consortia of microorganisms (e.g. as in activated sludge) as these results may not be easily reproducible in other laboratories.
Papers describing the isolation and identification of microorganisms are not regarded as appropriate but such information can be appended as supporting information to a paper. Papers dealing with simple process development are usually considered to lack sufficient novelty or interest to warrant publication.