Selonsertib, an ASK1 Inhibitor, Ameliorates Ovalbumin-Induced Allergic Asthma during Challenge and Sensitization Periods.

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Biomolecules & Therapeutics Pub Date : 2024-07-01 Epub Date: 2024-06-07 DOI:10.4062/biomolther.2023.203
So-Young Han, Dong-Soon Im
{"title":"Selonsertib, an ASK1 Inhibitor, Ameliorates Ovalbumin-Induced Allergic Asthma during Challenge and Sensitization Periods.","authors":"So-Young Han, Dong-Soon Im","doi":"10.4062/biomolther.2023.203","DOIUrl":null,"url":null,"abstract":"<p><p>Apoptosis signal-regulating kinase 1 (ASK1) is an upstream signaling molecule in oxidative stress-induced responses. Because oxidative stress is involved in asthma pathogenesis, ASK1 gene deficiency was investigated in animal models of allergic asthma. However, there is no study to investigate whether ASK1 inhibitors could be applied for asthma to date. Selonsertib, a potent and selective ASK1 inhibitor, was applied to BALB/c mice of an ovalbumin (OVA)-induced allergic asthma model. Selonsertib suppressed antigen-induced degranulation of RBL-2H3 mast cells in a concentration-dependent manner. The administration of selonsertib both before OVA sensitization and OVA challenge significantly reduced airway hyperresponsiveness, and suppressed eosinophil numbers and inflammatory cytokine levels in the bronchoalveolar lavage fluid. Histopathologic examination elucidated less inflammatory responses and reduced mucin-producing cells around the peribronchial regions of the lungs. Selonsertib also suppressed the IgE levels in serum and the protein levels of IL-13 in the bronchoalveolar lavage fluid. These results suggest that selonsertib may ameliorate allergic asthma by suppressing immune responses and be applicable to allergic asthma.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"451-459"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214966/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2023.203","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Apoptosis signal-regulating kinase 1 (ASK1) is an upstream signaling molecule in oxidative stress-induced responses. Because oxidative stress is involved in asthma pathogenesis, ASK1 gene deficiency was investigated in animal models of allergic asthma. However, there is no study to investigate whether ASK1 inhibitors could be applied for asthma to date. Selonsertib, a potent and selective ASK1 inhibitor, was applied to BALB/c mice of an ovalbumin (OVA)-induced allergic asthma model. Selonsertib suppressed antigen-induced degranulation of RBL-2H3 mast cells in a concentration-dependent manner. The administration of selonsertib both before OVA sensitization and OVA challenge significantly reduced airway hyperresponsiveness, and suppressed eosinophil numbers and inflammatory cytokine levels in the bronchoalveolar lavage fluid. Histopathologic examination elucidated less inflammatory responses and reduced mucin-producing cells around the peribronchial regions of the lungs. Selonsertib also suppressed the IgE levels in serum and the protein levels of IL-13 in the bronchoalveolar lavage fluid. These results suggest that selonsertib may ameliorate allergic asthma by suppressing immune responses and be applicable to allergic asthma.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ASK1抑制剂Selonsertib能改善卵清蛋白诱发的过敏性哮喘的挑战期和致敏期症状。
凋亡信号调节激酶1(ASK1)是氧化应激诱导反应的上游信号分子。由于氧化应激与哮喘发病机制有关,因此在过敏性哮喘动物模型中对 ASK1 基因缺乏进行了研究。然而,迄今为止还没有研究表明 ASK1 抑制剂是否可用于治疗哮喘。Selonsertib是一种强效的选择性ASK1抑制剂,应用于卵清蛋白(OVA)诱导的过敏性哮喘模型的BALB/c小鼠。塞隆色替以浓度依赖性方式抑制了抗原诱导的 RBL-2H3 肥大细胞脱颗粒。在OVA致敏前和OVA挑战前服用塞隆色替布可显著降低气道高反应性,并抑制支气管肺泡灌洗液中的嗜酸性粒细胞数量和炎症细胞因子水平。组织病理学检查显示,肺部支气管周围的炎症反应减轻,粘蛋白生成细胞减少。塞隆色替布还能抑制血清中的IgE水平和支气管肺泡灌洗液中的IL-13蛋白水平。这些结果表明,塞隆色替布可通过抑制免疫反应改善过敏性哮喘,适用于过敏性哮喘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
8.10%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.
期刊最新文献
Epigenetic Regulation of Nuclear Factor Erythroid-2-Related Factor 2 in Colorectal Cancer Cells Resistant to Ionizing Radiation. The Dual Role of Survival Genes in Neurons and Cancer Cells: a Strategic Clinical Application of DX2 in Neurodegenerative Diseases and Cancer. New Insights into AMPK, as a Potential Therapeutic Target in Metabolic Dysfunction-Associated Steatotic Liver Disease and Hepatic Fibrosis. An Overview of Existing and Emerging Weight-Loss Drugs to Target Obesity-Related Complications: Insights from Clinical Trials. C-Peptide Ameliorates Particulate Matter 2.5-Induced Skin Cell Apoptosis by Inhibiting NADPH Oxidation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1