A microfluidic chip for immobilization and imaging of Ciona intestinalis larvae

IF 1.8 3区 生物学 Q3 DEVELOPMENTAL BIOLOGY Journal of experimental zoology. Part B, Molecular and developmental evolution Pub Date : 2024-06-07 DOI:10.1002/jez.b.23267
Guillaume Poncelet, Lucia Parolini, Sebastian M. Shimeld
{"title":"A microfluidic chip for immobilization and imaging of Ciona intestinalis larvae","authors":"Guillaume Poncelet,&nbsp;Lucia Parolini,&nbsp;Sebastian M. Shimeld","doi":"10.1002/jez.b.23267","DOIUrl":null,"url":null,"abstract":"<p>Sea squirts (Tunicata) are chordates and develop a swimming larva with a small and defined number of individually identifiable cells. This offers the prospect of connecting specific stimuli to behavioral output and characterizing the neural activity that links these together. Here, we describe the development of a microfluidic chip that allows live larvae of the sea squirt <i>Ciona intestinalis</i> to be immobilized and recorded. By generating transgenic larvae expressing GCaAMP6m in defined cells, we show that calcium ion levels can be recorded from immobilized larvae, while microfluidic control allows larvae to be exposed to specific waterborne stimuli. We trial this on sea water carrying increased levels of carbon dioxide, providing evidence that larvae can sense this gas.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"342 7","pages":"443-452"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23267","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23267","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sea squirts (Tunicata) are chordates and develop a swimming larva with a small and defined number of individually identifiable cells. This offers the prospect of connecting specific stimuli to behavioral output and characterizing the neural activity that links these together. Here, we describe the development of a microfluidic chip that allows live larvae of the sea squirt Ciona intestinalis to be immobilized and recorded. By generating transgenic larvae expressing GCaAMP6m in defined cells, we show that calcium ion levels can be recorded from immobilized larvae, while microfluidic control allows larvae to be exposed to specific waterborne stimuli. We trial this on sea water carrying increased levels of carbon dioxide, providing evidence that larvae can sense this gas.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于固定和成像脊索动物幼虫的微流控芯片。
海鞘(Tunicata)是脊索动物,发育出的游泳幼虫具有少量可单独识别的细胞。这为将特定刺激与行为输出联系起来并描述将这些联系在一起的神经活动提供了前景。在这里,我们描述了一种微流控芯片的开发过程,这种芯片可以固定和记录海鞘肠虫(Ciona intestinalis)的活体幼虫。通过在确定的细胞中生成表达 GCaAMP6m 的转基因幼虫,我们发现可以从固定的幼虫体内记录钙离子水平,而微流控芯片则可以将幼虫暴露在特定的水载刺激下。我们在二氧化碳含量增加的海水中进行了试验,证明幼虫能够感知这种气体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
9.10%
发文量
63
审稿时长
6-12 weeks
期刊介绍: Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms. The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB. We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.
期刊最新文献
The Buds of Oscarella lobularis (Porifera, Homoscleromorpha): A New Convenient Model for Sponge Cell and Evolutionary Developmental Biology. Issue Information In the Spotlight—Postdoc Supernumerary Chromosomes Enhance Karyotypic Diversification of Narrow-Headed Voles of the Subgenus Stenocranius (Rodentia, Mammalia). Exploring the Influence of Neomorphic Gekkotan Paraphalanges on Limb Modularity and Integration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1