Genomic Gigantism is not Associated with Reduced Selection Efficiency in Neotropical Salamanders.

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Molecular Evolution Pub Date : 2024-08-01 Epub Date: 2024-06-06 DOI:10.1007/s00239-024-10177-w
Hairo Rios-Carlos, María Guadalupe Segovia-Ramírez, Matthew K Fujita, Sean M Rovito
{"title":"Genomic Gigantism is not Associated with Reduced Selection Efficiency in Neotropical Salamanders.","authors":"Hairo Rios-Carlos, María Guadalupe Segovia-Ramírez, Matthew K Fujita, Sean M Rovito","doi":"10.1007/s00239-024-10177-w","DOIUrl":null,"url":null,"abstract":"<p><p>Genome size variation in eukaryotes has myriad effects on organismal biology from the genomic to whole-organism level. Large genome size may be associated with lower selection efficiency because lower effective population sizes allow fixation of deleterious mutations via genetic drift, increasing genome size and decreasing selection efficiency. Because of a hypothesized negative relationship between genome size and recombination rate per base pair, increased genome size could also increase the effect of linked selection in the genome, decreasing the efficiency with which natural selection can fix or remove mutations. We used a transcriptomic dataset of 15 and a subset of six Neotropical salamander species ranging in genome size from 12 to 87 pg to study the relationship between genome size and efficiency of selection. We estimated dN/dS of salamanders with small and large genomes and tested for relaxation of selection in the larger genomes. Contrary to our expectations, we did not find a significant relationship between genome size and selection efficiency or strong evidence for higher dN/dS values in species with larger genomes for either species set. We also found little evidence for relaxation of selection in species with larger genomes. A positive correlation between genome size and range size (a proxy of population size) in this group disagrees with predictions of stronger drift in species with larger genomes. Our results highlight the complex interactions between the many forces shaping genomic variation in organisms with genomic gigantism.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11291587/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-024-10177-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/6 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genome size variation in eukaryotes has myriad effects on organismal biology from the genomic to whole-organism level. Large genome size may be associated with lower selection efficiency because lower effective population sizes allow fixation of deleterious mutations via genetic drift, increasing genome size and decreasing selection efficiency. Because of a hypothesized negative relationship between genome size and recombination rate per base pair, increased genome size could also increase the effect of linked selection in the genome, decreasing the efficiency with which natural selection can fix or remove mutations. We used a transcriptomic dataset of 15 and a subset of six Neotropical salamander species ranging in genome size from 12 to 87 pg to study the relationship between genome size and efficiency of selection. We estimated dN/dS of salamanders with small and large genomes and tested for relaxation of selection in the larger genomes. Contrary to our expectations, we did not find a significant relationship between genome size and selection efficiency or strong evidence for higher dN/dS values in species with larger genomes for either species set. We also found little evidence for relaxation of selection in species with larger genomes. A positive correlation between genome size and range size (a proxy of population size) in this group disagrees with predictions of stronger drift in species with larger genomes. Our results highlight the complex interactions between the many forces shaping genomic variation in organisms with genomic gigantism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因组巨型化与新热带蝾螈选择效率降低无关
真核生物的基因组大小变异对生物生物学产生了从基因组到整个生物体水平的无数影响。基因组大小大可能与选择效率低有关,因为有效种群规模较小,有害突变可通过遗传漂变固定下来,从而增加基因组大小,降低选择效率。由于假设基因组大小与每个碱基对的重组率之间存在负相关关系,基因组大小的增加也可能会增加基因组中关联选择的效果,从而降低自然选择修复或清除突变的效率。我们利用基因组大小从12到87 pg不等的15个和6个新热带蝾螈物种的转录组数据集来研究基因组大小与选择效率之间的关系。我们估算了小基因组和大基因组蝾螈的 dN/dS,并测试了大基因组蝾螈的选择松弛程度。与我们的预期相反,我们没有发现基因组大小与选择效率之间有显著的关系,也没有发现强有力的证据表明在任何物种集中,基因组较大的物种具有较高的 dN/dS 值。我们也没有发现什么证据表明基因组较大的物种会放松选择。这组物种的基因组大小与分布区大小(种群大小的代表)之间呈正相关,这与基因组较大的物种漂移较强的预测不符。我们的研究结果凸显了在基因组巨大的生物体内,影响基因组变异的多种力量之间复杂的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
期刊最新文献
Stress-Induced Constraint on Expression Noise of Essential Genes in E. coli. Correction: Analysis of Cancer-Resisting Evolutionary Adaptations in Wild Animals and Applications for Human Oncology. Putative MutS2 Homologs in Algae: More Goods in Shopping Bag? Volatile Organic Compound Metabolism on Early Earth. Evolution of Cellular Organization Along the First Branches of the Tree of Life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1