C L Molina, M M Magalhães, A C Rodrigues, S A Taniwaki, S O de Souza Silva, G A König, P E Brandão
{"title":"Detection of an Alphacoronavirus in a Brazilian Bat (Molossus sp.).","authors":"C L Molina, M M Magalhães, A C Rodrigues, S A Taniwaki, S O de Souza Silva, G A König, P E Brandão","doi":"10.1007/s00239-025-10236-w","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the COVID-19 pandemic and the uncertainty about aspects of its origin, in recent years there has been an increased interest in investigating coronaviruses in wild animals. Bats are hosts of the greatest diversity of coronaviruses to date, including the ancestors of viruses that have caused outbreaks in humans. Although in Brazil, information on coronaviruses in bats has expanded, still they remain unrepresentative. To help shed some light on this matter, we collected 175 samples from bats of different species from two Brazilian states. Here, we report the previously unknown presence of an alphacoronavirus in a bat (Molossus sp.) from Ceará. The phylogenetic analysis showed close relationships with alphacoronaviruses from Brazil and Argentina, but it was not possible to determine the subgenus or species of this virus using RNA-dependent RNA-polymerase (RdRp) domain of the nsp12 protein-coding sequence as it was distant from the specimens considered by the International Committee on Taxonomy of Viruses (ICTV). Finally, by performing High-Throughput Sequencing, we were able to find contigs mostly belonging to domains of the replicase of bat coronaviruses related to American bats of the Molossidae and Vespertilionidae families.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-025-10236-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the COVID-19 pandemic and the uncertainty about aspects of its origin, in recent years there has been an increased interest in investigating coronaviruses in wild animals. Bats are hosts of the greatest diversity of coronaviruses to date, including the ancestors of viruses that have caused outbreaks in humans. Although in Brazil, information on coronaviruses in bats has expanded, still they remain unrepresentative. To help shed some light on this matter, we collected 175 samples from bats of different species from two Brazilian states. Here, we report the previously unknown presence of an alphacoronavirus in a bat (Molossus sp.) from Ceará. The phylogenetic analysis showed close relationships with alphacoronaviruses from Brazil and Argentina, but it was not possible to determine the subgenus or species of this virus using RNA-dependent RNA-polymerase (RdRp) domain of the nsp12 protein-coding sequence as it was distant from the specimens considered by the International Committee on Taxonomy of Viruses (ICTV). Finally, by performing High-Throughput Sequencing, we were able to find contigs mostly belonging to domains of the replicase of bat coronaviruses related to American bats of the Molossidae and Vespertilionidae families.
IF 1.6 4区 医学Virus GenesPub Date : 2013-08-01DOI: 10.1007/s11262-013-0899-x
Francisco Esmaile de Sales Lima, Fabrício Souza Campos, Hiran Castagnino Kunert Filho, Helena Beatriz de Carvalho Ruthner Batista, Pedro Carnielli, Samuel Paulo Cibulski, Fernando Rosado Spilki, Paulo Michel Roehe, Ana Cláudia Franco
期刊介绍:
Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.