Preparation of Autoclavable and Injectable Silk Fibroin Cryogels for Tissue Engineering Applications

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Macromolecular bioscience Pub Date : 2024-06-06 DOI:10.1002/mabi.202400038
Hongjuan Han, Haiyan Li, Lu Wang, Yong Zhu, Haoqing Guan, Jingzhi Yao, Wenqian Xiao, Bo Li, Xiaoling Liao
{"title":"Preparation of Autoclavable and Injectable Silk Fibroin Cryogels for Tissue Engineering Applications","authors":"Hongjuan Han,&nbsp;Haiyan Li,&nbsp;Lu Wang,&nbsp;Yong Zhu,&nbsp;Haoqing Guan,&nbsp;Jingzhi Yao,&nbsp;Wenqian Xiao,&nbsp;Bo Li,&nbsp;Xiaoling Liao","doi":"10.1002/mabi.202400038","DOIUrl":null,"url":null,"abstract":"<p>A cryogel is a supermacroporous gel network that is generated at subzero temperatures by polymerizing monomers or gelating polymeric precursors. Since cryogels possess inherent characteristics such as interconnected macroporous structures, excellent mechanical properties, and high resistance to autoclave sterilization, they are highly desirable for tissue engineering and regenerative medicine. Silk fibroin, a natural protein obtained from <i>Bombyx mori</i> silkworms, is an excellent raw material for cryogel preparation. The aim of this study is to establish a controlled method for preparing silk fibroin cryogels with suitable properties for application as tissue engineering scaffolds. Using a dual crosslinking strategy consisting of low-temperature radical polymerization coupled with methanol-induced conformational transformation, porous cryogels are prepared. The cryogels display many unique characteristics, such as an interconnected macroporous structure, a high water absorption capacity, water-triggered shape memory, syringe injectability, and strong resilience to autoclave sterilization. Furthermore, the cryogels demonstrate excellent biocompatibility and cell affinity, facilitating cell adhesion, migration, and proliferation. The interconnected supermacroporous architecture resembling the native extracellular matrix, together with their unique physical properties and autoclaving stability, suggests that cryogels are promising candidate scaffolds for tissue engineering and cell therapy.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400038","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A cryogel is a supermacroporous gel network that is generated at subzero temperatures by polymerizing monomers or gelating polymeric precursors. Since cryogels possess inherent characteristics such as interconnected macroporous structures, excellent mechanical properties, and high resistance to autoclave sterilization, they are highly desirable for tissue engineering and regenerative medicine. Silk fibroin, a natural protein obtained from Bombyx mori silkworms, is an excellent raw material for cryogel preparation. The aim of this study is to establish a controlled method for preparing silk fibroin cryogels with suitable properties for application as tissue engineering scaffolds. Using a dual crosslinking strategy consisting of low-temperature radical polymerization coupled with methanol-induced conformational transformation, porous cryogels are prepared. The cryogels display many unique characteristics, such as an interconnected macroporous structure, a high water absorption capacity, water-triggered shape memory, syringe injectability, and strong resilience to autoclave sterilization. Furthermore, the cryogels demonstrate excellent biocompatibility and cell affinity, facilitating cell adhesion, migration, and proliferation. The interconnected supermacroporous architecture resembling the native extracellular matrix, together with their unique physical properties and autoclaving stability, suggests that cryogels are promising candidate scaffolds for tissue engineering and cell therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制备用于组织工程应用的可高压灭菌和可注射的蚕丝纤维冷凝胶。
低温凝胶是通过单体聚合或聚合物前体凝胶化在零度以下生成的超大孔凝胶网络。由于低温凝胶具有固有特性,如相互连接的大孔结构、优异的机械性能和高压灭菌的高耐受性,因此非常适用于组织工程和再生医学。蚕丝纤维素是从家蚕中提取的一种天然蛋白质,是制备低温凝胶的极佳原料。本研究的目的是建立一种可控方法,制备具有合适特性的蚕丝纤维蛋白冷凝胶,以用作组织工程支架。通过低温自由基聚合和甲醇诱导构象转变的双重交联策略,制备出了多孔低温凝胶。这种低温凝胶显示出许多独特的特性,如相互连接的大孔结构、高吸水性、水触发的形状记忆、注射器可注射性以及对高压灭菌的强适应性。此外,这种低温凝胶还具有出色的生物相容性和细胞亲和性,有利于细胞粘附、迁移和增殖。与原生细胞外基质相似的相互连接的超多孔结构,加上其独特的物理特性和高压灭菌稳定性,表明冷凝凝胶是组织工程和细胞治疗领域前景广阔的候选支架。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
期刊最新文献
In Situ Forming Injectable Gelatin-Based Antibacterial Bioadhesives for Preventing Postoperative Leakage and Abdominal Adhesions. Polyamino Acid Based Zwitterionic Coating can Inhibit Coagulation and Inflammation Through Anti-Fouling and Restoring Microenvironment. Surface Coating of ZIF-8 Nanoparticles with Polyacrylic Acid: A Facile Approach to Enhance Chemical Stability for Biomedical Applications. Biocompatible Zn-Phthalocyanine/Gelatin Nanofiber Membrane for Antibacterial Therapy. The Application of Biomaterial-Based Spinal Cord Tissue Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1