Lillian H Goodman, Amanda A Allshouse, Ann M Bruno, Torri D Metz
{"title":"Validation of a Vaginal Birth After Cesarean Delivery Prediction Model Without Race and Ethnicity in Individuals With Two Prior Cesarean Deliveries.","authors":"Lillian H Goodman, Amanda A Allshouse, Ann M Bruno, Torri D Metz","doi":"10.1097/AOG.0000000000005633","DOIUrl":null,"url":null,"abstract":"<p><p>Previous models for prediction of vaginal birth after cesarean (VBAC) relied on race and ethnicity, raising concern for bias. In response, the Maternal-Fetal Medicine Units Network (MFMU) created a new prediction model without race and ethnicity for individuals with one prior cesarean delivery. We performed a secondary analysis of the MFMU Cesarean Registry database to evaluate whether the MFMU VBAC prediction model without race and ethnicity could accurately predict VBAC for individuals with two prior cesarean deliveries. Overall, 353 individuals were included and 252 (71%) had VBAC. An area under the curve for the receiver operating curve of 0.74 (95% CI, 0.69-0.80) was reported for the predicted probabilities for VBAC, indicating that the model can be used for prediction of VBAC in this population.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257801/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/AOG.0000000000005633","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous models for prediction of vaginal birth after cesarean (VBAC) relied on race and ethnicity, raising concern for bias. In response, the Maternal-Fetal Medicine Units Network (MFMU) created a new prediction model without race and ethnicity for individuals with one prior cesarean delivery. We performed a secondary analysis of the MFMU Cesarean Registry database to evaluate whether the MFMU VBAC prediction model without race and ethnicity could accurately predict VBAC for individuals with two prior cesarean deliveries. Overall, 353 individuals were included and 252 (71%) had VBAC. An area under the curve for the receiver operating curve of 0.74 (95% CI, 0.69-0.80) was reported for the predicted probabilities for VBAC, indicating that the model can be used for prediction of VBAC in this population.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.