Integrative analysis of metabolomics and proteomics reveals mechanism of berberrubine-induced nephrotoxicity

IF 3.3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Toxicology and applied pharmacology Pub Date : 2024-06-04 DOI:10.1016/j.taap.2024.116992
Jinqiu Rao , Tianwang Wang , Kai Wang , Feng Qiu
{"title":"Integrative analysis of metabolomics and proteomics reveals mechanism of berberrubine-induced nephrotoxicity","authors":"Jinqiu Rao ,&nbsp;Tianwang Wang ,&nbsp;Kai Wang ,&nbsp;Feng Qiu","doi":"10.1016/j.taap.2024.116992","DOIUrl":null,"url":null,"abstract":"<div><p>Berberrubine (BRB), a main metabolite of berberine, has stronger hypoglycemic and lipid-lowering activity than its parent form. We previously found that BRB could cause obvious nephrotoxicity, but the molecular mechanism involved remains unknown. In this study, we systematically integrated metabolomics and quantitative proteomics to reveal the potential mechanism of nephrotoxicity caused by BRB. Metabolomic analysis revealed that 103 significant— differentially metabolites were changed. Among the mentioned compounds, significantly upregulated metabolites were observed for phosphorylcholine, sn-glycerol-3-phosphoethanolamine, and phosphatidylcholine. The top three enriched KEGG pathways were the mTOR signaling pathway, central carbon metabolism in cancer, and choline metabolism in cancer. ERK1/2 plays key roles in all three metabolic pathways. To further confirm the main signaling pathways involved, a proteomic analysis was conducted to screen for key proteins (such as Mapk1, Mapk14, and Caspase), indicating the potential involvement of cellular growth and apoptosis. Moreover, combined metabolomics and proteomics analyses revealed the participation of ERK1/2 in multiple metabolic pathways. These findings indicated that ERK1/2 regulated the significant— differentially abundant metabolites determined via metabolomics analysis. Notably, through a cellular thermal shift assay (CETSA) and molecular docking, ERK1/2 were revealed to be the direct binding target involved in BRB-induced nephrotoxicity. To summarize, this study sheds light on the understanding of severe nephrotoxicity caused by BRB and provides scientific basis for its safe use and rational development.</p></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X2400190X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Berberrubine (BRB), a main metabolite of berberine, has stronger hypoglycemic and lipid-lowering activity than its parent form. We previously found that BRB could cause obvious nephrotoxicity, but the molecular mechanism involved remains unknown. In this study, we systematically integrated metabolomics and quantitative proteomics to reveal the potential mechanism of nephrotoxicity caused by BRB. Metabolomic analysis revealed that 103 significant— differentially metabolites were changed. Among the mentioned compounds, significantly upregulated metabolites were observed for phosphorylcholine, sn-glycerol-3-phosphoethanolamine, and phosphatidylcholine. The top three enriched KEGG pathways were the mTOR signaling pathway, central carbon metabolism in cancer, and choline metabolism in cancer. ERK1/2 plays key roles in all three metabolic pathways. To further confirm the main signaling pathways involved, a proteomic analysis was conducted to screen for key proteins (such as Mapk1, Mapk14, and Caspase), indicating the potential involvement of cellular growth and apoptosis. Moreover, combined metabolomics and proteomics analyses revealed the participation of ERK1/2 in multiple metabolic pathways. These findings indicated that ERK1/2 regulated the significant— differentially abundant metabolites determined via metabolomics analysis. Notably, through a cellular thermal shift assay (CETSA) and molecular docking, ERK1/2 were revealed to be the direct binding target involved in BRB-induced nephrotoxicity. To summarize, this study sheds light on the understanding of severe nephrotoxicity caused by BRB and provides scientific basis for its safe use and rational development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
代谢组学和蛋白质组学的综合分析揭示了小檗碱诱导肾毒性的机制
小檗碱(BRB)是小檗碱的主要代谢产物,与其母体相比,具有更强的降血糖和降血脂活性。以前我们曾发现小檗碱可引起明显的肾毒性,但其分子机制尚不清楚。在本研究中,我们系统地整合了代谢组学和定量蛋白质组学,以揭示BRB引起肾毒性的潜在机制。代谢组学分析表明,有103种代谢物发生了明显的差异。在上述化合物中,磷酸胆碱、sn-甘油-3-磷脂酰乙醇胺和磷脂酰胆碱的代谢物明显上调。KEGG通路富集的前三位是mTOR信号通路、癌症中的中心碳代谢和癌症中的胆碱代谢。ERK1/2在这三条代谢途径中都发挥了关键作用。为了进一步确认所涉及的主要信号通路,还进行了蛋白质组学分析,以筛选关键蛋白(如 Mapk1、Mapk14 和 Caspase),这表明细胞生长和凋亡可能参与其中。此外,代谢组学和蛋白质组学的综合分析表明,ERK1/2参与了多种代谢途径。这些研究结果表明,ERK1/2 对通过代谢组学分析确定的显著不同的丰富代谢物具有调节作用。值得注意的是,通过细胞热转移试验(CETSA)和分子对接,发现ERK1/2是参与BRB诱导肾毒性的直接结合靶点。总之,这项研究有助于人们了解 BRB 引起的严重肾毒性,并为其安全使用和合理开发提供科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称产品信息其他信息采购帮参考价格
上海源叶 Berberrubine
¥51.90~¥30082.00
来源期刊
CiteScore
6.80
自引率
2.60%
发文量
309
审稿时长
32 days
期刊介绍: Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products. Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged. Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.
期刊最新文献
Human trophoblast organoids for improved prediction of placental ABC transporter-mediated drug transport Hesperidin attenuates radiation-induced ovarian failure in rats: Emphasis on TLR-4/NF-ĸB signaling pathway Protective effects of alpinetin against interleukin-1β-exposed nucleus pulposus cells: Involvement of the TLR4/MyD88 pathway in a cellular model of intervertebral disc degeneration Strengths and limitations of the worm development and activity test (wDAT) as a chemical screening tool for developmental hazards Protective effect of hydroxysafflor yellow a on thioacetamide-induced liver injury and osteopenia in zebrafish
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1