{"title":"Soft-tissue sound-speed-aware ultrasound-CT registration method for computer-assisted orthopedic surgery.","authors":"Chuanba Liu, Wenshuo Wang, Tao Sun, Yimin Song","doi":"10.1007/s11517-024-03123-x","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound (US) has been introduced to computer-assisted orthopedic surgery for bone registration owing to its advantages of nonionizing radiation, low cost, and noninvasiveness. However, the registration accuracy is limited by US image distortion caused by variations in the acoustic properties of soft tissues. This paper proposes a soft-tissue sound-speed-aware registration method to overcome the above challenge. First, the feature enhancement strategy of multi-channel overlay is proposed for U<sup>2</sup>-net to improve bone segmentation performance. Secondly, the sound speed of soft tissue is estimated by simulating the bone surface distance map for the update of US-derived points. Finally, an iterative registration strategy is adopted to optimize the registration result. A phantom experiment was conducted using different registration methods for the femur and tibia/fibula. The fiducial registration error (femur, 0.98 ± 0.08 mm (mean ± SD); tibia/fibula, 1.29 ± 0.19 mm) and the target registration error (less than 2.11 mm) showed the high accuracy of the proposed method. The experimental results suggest that the proposed method can be integrated into navigation systems that provide surgeons with accurate 3D navigation information.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03123-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasound (US) has been introduced to computer-assisted orthopedic surgery for bone registration owing to its advantages of nonionizing radiation, low cost, and noninvasiveness. However, the registration accuracy is limited by US image distortion caused by variations in the acoustic properties of soft tissues. This paper proposes a soft-tissue sound-speed-aware registration method to overcome the above challenge. First, the feature enhancement strategy of multi-channel overlay is proposed for U2-net to improve bone segmentation performance. Secondly, the sound speed of soft tissue is estimated by simulating the bone surface distance map for the update of US-derived points. Finally, an iterative registration strategy is adopted to optimize the registration result. A phantom experiment was conducted using different registration methods for the femur and tibia/fibula. The fiducial registration error (femur, 0.98 ± 0.08 mm (mean ± SD); tibia/fibula, 1.29 ± 0.19 mm) and the target registration error (less than 2.11 mm) showed the high accuracy of the proposed method. The experimental results suggest that the proposed method can be integrated into navigation systems that provide surgeons with accurate 3D navigation information.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).