Geographically and Temporally Weighted Regression in Assessing Dengue Fever Spread Factors in YunnanBorder Regions.

Xiao Xiang Zhu, Song Wang Wang, Yan Fei Li, Ye Wu Zhang, Xue Mei Su, Xiao Tao Zhao
{"title":"Geographically and Temporally Weighted Regression in Assessing Dengue Fever Spread Factors in YunnanBorder Regions.","authors":"Xiao Xiang Zhu, Song Wang Wang, Yan Fei Li, Ye Wu Zhang, Xue Mei Su, Xiao Tao Zhao","doi":"10.3967/bes2024.056","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study employs the Geographically and Temporally Weighted Regression (GTWR) model to assess the impact of meteorological elements and imported cases on dengue fever outbreaks, emphasizing the spatial-temporal variability of these factors in border regions.</p><p><strong>Methods: </strong>We conducted a descriptive analysis of dengue fever's temporal-spatial distribution in Yunnan border areas. Utilizing annual data from 2013 to 2019, with each county in the Yunnan border serving as a spatial unit, we constructed a GTWR model to investigate the determinants of dengue fever and their spatio-temporal heterogeneity in this region.</p><p><strong>Results: </strong>The GTWR model, proving more effective than Ordinary Least Squares (OLS) analysis, identified significant spatial and temporal heterogeneity in factors influencing dengue fever's spread along the Yunnan border. Notably, the GTWR model revealed a substantial variation in the relationship between indigenous dengue fever incidence, meteorological variables, and imported cases across different counties.</p><p><strong>Conclusion: </strong>In the Yunnan border areas, local dengue incidence is affected by temperature, humidity, precipitation, wind speed, and imported cases, with these factors' influence exhibiting notable spatial and temporal variation.</p>","PeriodicalId":93903,"journal":{"name":"Biomedical and environmental sciences : BES","volume":"37 5","pages":"511-520"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical and environmental sciences : BES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3967/bes2024.056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study employs the Geographically and Temporally Weighted Regression (GTWR) model to assess the impact of meteorological elements and imported cases on dengue fever outbreaks, emphasizing the spatial-temporal variability of these factors in border regions.

Methods: We conducted a descriptive analysis of dengue fever's temporal-spatial distribution in Yunnan border areas. Utilizing annual data from 2013 to 2019, with each county in the Yunnan border serving as a spatial unit, we constructed a GTWR model to investigate the determinants of dengue fever and their spatio-temporal heterogeneity in this region.

Results: The GTWR model, proving more effective than Ordinary Least Squares (OLS) analysis, identified significant spatial and temporal heterogeneity in factors influencing dengue fever's spread along the Yunnan border. Notably, the GTWR model revealed a substantial variation in the relationship between indigenous dengue fever incidence, meteorological variables, and imported cases across different counties.

Conclusion: In the Yunnan border areas, local dengue incidence is affected by temperature, humidity, precipitation, wind speed, and imported cases, with these factors' influence exhibiting notable spatial and temporal variation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估云南边境地区登革热传播因素的时空加权回归研究
研究目的本研究采用地理和时间加权回归(GTWR)模型评估气象要素和输入病例对登革热暴发的影响,强调这些因素在边境地区的时空变异性:我们对云南边境地区登革热的时空分布进行了描述性分析。利用 2013 年至 2019 年的年度数据,以云南边境地区的每个县为空间单位,我们构建了一个 GTWR 模型来研究该地区登革热的决定因素及其时空异质性:与普通最小二乘法(OLS)分析相比,GTWR 模型更有效地确定了影响登革热在云南边境地区传播的因素在空间和时间上的显著异质性。值得注意的是,GTWR 模型揭示了本地登革热发病率、气象变量和输入病例之间的关系在不同县之间存在很大差异:结论:在云南边境地区,当地登革热发病率受温度、湿度、降水、风速和输入病例的影响,这些因素的影响表现出明显的时空差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
bla NDM-1 Carried by a Transferable Plasmid in a Salmonella Strain Isolated from Healthy Individuals. Activation of IP10/CXCR3 Signaling is Highly Coincidental with PrP Sc Deposition in the Brains of Scrapie-Infected Mice. Barriers to the Acceptance of Tuberculosis Preventive Treatment: A Multicenter Cross-sectional Study in China. Characteristics of Mumps Outbreaks in Four Fujian Province Schools. Diagnostic Value of Cerebrospinal Fluid Sequencing for Neurosyphilis with Cognitive Impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1