Stimulus-response signaling dynamics characterize macrophage polarization states.

Cell systems Pub Date : 2024-06-19 Epub Date: 2024-06-05 DOI:10.1016/j.cels.2024.05.002
Apeksha Singh, Supriya Sen, Michael Iter, Adewunmi Adelaja, Stefanie Luecke, Xiaolu Guo, Alexander Hoffmann
{"title":"Stimulus-response signaling dynamics characterize macrophage polarization states.","authors":"Apeksha Singh, Supriya Sen, Michael Iter, Adewunmi Adelaja, Stefanie Luecke, Xiaolu Guo, Alexander Hoffmann","doi":"10.1016/j.cels.2024.05.002","DOIUrl":null,"url":null,"abstract":"<p><p>The functional state of cells is dependent on their microenvironmental context. Prior studies described how polarizing cytokines alter macrophage transcriptomes and epigenomes. Here, we characterized the functional responses of 6 differentially polarized macrophage populations by measuring the dynamics of transcription factor nuclear factor κB (NF-κB) in response to 8 stimuli. The resulting dataset of single-cell NF-κB trajectories was analyzed by three approaches: (1) machine learning on time-series data revealed losses of stimulus distinguishability with polarization, reflecting canalized effector functions. (2) Informative trajectory features driving stimulus distinguishability (\"signaling codons\") were identified and used for mapping a cell state landscape that could then locate macrophages conditioned by an unrelated condition. (3) Kinetic parameters, inferred using a mechanistic NF-κB network model, provided an alternative mapping of cell states and correctly predicted biochemical findings. Together, this work demonstrates that a single analyte's dynamic trajectories may distinguish the functional states of single cells and molecular network states underlying them. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"563-577.e6"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.05.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The functional state of cells is dependent on their microenvironmental context. Prior studies described how polarizing cytokines alter macrophage transcriptomes and epigenomes. Here, we characterized the functional responses of 6 differentially polarized macrophage populations by measuring the dynamics of transcription factor nuclear factor κB (NF-κB) in response to 8 stimuli. The resulting dataset of single-cell NF-κB trajectories was analyzed by three approaches: (1) machine learning on time-series data revealed losses of stimulus distinguishability with polarization, reflecting canalized effector functions. (2) Informative trajectory features driving stimulus distinguishability ("signaling codons") were identified and used for mapping a cell state landscape that could then locate macrophages conditioned by an unrelated condition. (3) Kinetic parameters, inferred using a mechanistic NF-κB network model, provided an alternative mapping of cell states and correctly predicted biochemical findings. Together, this work demonstrates that a single analyte's dynamic trajectories may distinguish the functional states of single cells and molecular network states underlying them. A record of this paper's transparent peer review process is included in the supplemental information.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
刺激-反应信号动态描述了巨噬细胞的极化状态。
细胞的功能状态取决于其微环境背景。之前的研究描述了极化细胞因子如何改变巨噬细胞转录组和表观基因组。在这里,我们通过测量转录因子核因子κB(NF-κB)在8种刺激下的动态变化,描述了6种不同极化巨噬细胞群的功能反应。由此产生的单细胞 NF-κB 轨迹数据集通过三种方法进行了分析:(1)对时间序列数据进行机器学习,发现刺激的可区分性随着极化的消失而消失,这反映了渠化效应器功能。(2)确定了驱动刺激可分辨性的信息轨迹特征("信号密码子"),并将其用于绘制细胞状态图,从而定位受无关条件制约的巨噬细胞。(3) 利用机理 NF-κB 网络模型推断的动力学参数提供了另一种细胞状态图谱,并正确预测了生化结果。总之,这项工作表明,单个分析物的动态轨迹可以区分单个细胞的功能状态及其基础的分子网络状态。本文的同行评审过程透明,其记录见补充信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Markov field network model of multi-modal data predicts effects of immune system perturbations on intravenous BCG vaccination in macaques. A three-node Turing gene circuit forms periodic spatial patterns in bacteria. Tracking the gene expression programs and clonal relationships that underlie mast, myeloid, and T lineage specification from stem cells. Optimized reporters for multiplexed detection of transcription factor activity. Classification and functional characterization of regulators of intracellular STING trafficking identified by genome-wide optical pooled screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1