Yujie Wan, Li Luo, Xinzhi Xu, Qihuan Fu, Ying Li, Kaifeng Huang, Hang Zhou, Fang Li
{"title":"Mesothelin-Mediated Paclitaxel Phase-Shifted Nanodelivery System for Molecular Ultrasound Imaging and Targeted Therapy Potential in Ovarian Cancer.","authors":"Yujie Wan, Li Luo, Xinzhi Xu, Qihuan Fu, Ying Li, Kaifeng Huang, Hang Zhou, Fang Li","doi":"10.2174/0115672018300502240530064139","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ovarian cancer presents a substantial risk to women's health and lives, with early detection and treatment proving challenging. Targeted nanodelivery systems are viewed as a promising approach to enhance the effectiveness of ovarian cancer treatment and ultrasonic imaging outcomes.</p><p><strong>Objective: </strong>A phase-shifted nanodelivery system (NPs) loaded with paclitaxel (PTX) and further conjugated with avidin (Ab) was studied, with the goal of investigating the effects of targeted nanodelivery strategies on the in vitro therapeutic efficacy and ultrasonic imaging of ovarian cancer. This study provides a foundation for future in vivo treatments utilizing this approach.</p><p><strong>Methods: </strong>PTX-NPs were prepared using the single water-in-oil (O/W) emulsion solvent evaporation method, with avidin coupling achieved through biotin-avidin affinity. The encapsulation efficiency and release profile of PTX were analyzed using UV spectrophotometry. The phase-shift properties of the Ab-PTX-NPs delivery system were evaluated, and the targeting efficiency, cytotoxicity against SKOV3 cells, and in vivo biosafety of various nanodelivery systems were assessed.</p><p><strong>Results: </strong>The prepared nanodelivery system showed a stable and uniform structure with a good particle size distribution and exhibited favorable release characteristics under ultrasound exposure. In vitro experiments revealed that the nanodelivery system displayed excellent targeting and cytotoxic effects against SKOV3 cells, indicating the potential of the Ab-PTX-NPs delivery system for targeted ovarian cancer therapy. In vivo safety studies demonstrated the high biosafety of the prepared nanodelivery system.</p><p><strong>Conclusion: </strong>A novel nanodelivery system was developed, and the experimental results obtained provide a solid experimental basis for further research on in vivo ultrasound molecular imaging technology, offering new insights into targeted ultrasound molecular imaging and the treatment of ovarian cancer.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672018300502240530064139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ovarian cancer presents a substantial risk to women's health and lives, with early detection and treatment proving challenging. Targeted nanodelivery systems are viewed as a promising approach to enhance the effectiveness of ovarian cancer treatment and ultrasonic imaging outcomes.
Objective: A phase-shifted nanodelivery system (NPs) loaded with paclitaxel (PTX) and further conjugated with avidin (Ab) was studied, with the goal of investigating the effects of targeted nanodelivery strategies on the in vitro therapeutic efficacy and ultrasonic imaging of ovarian cancer. This study provides a foundation for future in vivo treatments utilizing this approach.
Methods: PTX-NPs were prepared using the single water-in-oil (O/W) emulsion solvent evaporation method, with avidin coupling achieved through biotin-avidin affinity. The encapsulation efficiency and release profile of PTX were analyzed using UV spectrophotometry. The phase-shift properties of the Ab-PTX-NPs delivery system were evaluated, and the targeting efficiency, cytotoxicity against SKOV3 cells, and in vivo biosafety of various nanodelivery systems were assessed.
Results: The prepared nanodelivery system showed a stable and uniform structure with a good particle size distribution and exhibited favorable release characteristics under ultrasound exposure. In vitro experiments revealed that the nanodelivery system displayed excellent targeting and cytotoxic effects against SKOV3 cells, indicating the potential of the Ab-PTX-NPs delivery system for targeted ovarian cancer therapy. In vivo safety studies demonstrated the high biosafety of the prepared nanodelivery system.
Conclusion: A novel nanodelivery system was developed, and the experimental results obtained provide a solid experimental basis for further research on in vivo ultrasound molecular imaging technology, offering new insights into targeted ultrasound molecular imaging and the treatment of ovarian cancer.