MedYOLO: A Medical Image Object Detection Framework.

Joseph Sobek, Jose R Medina Inojosa, Betsy J Medina Inojosa, S M Rassoulinejad-Mousavi, Gian Marco Conte, Francisco Lopez-Jimenez, Bradley J Erickson
{"title":"MedYOLO: A Medical Image Object Detection Framework.","authors":"Joseph Sobek, Jose R Medina Inojosa, Betsy J Medina Inojosa, S M Rassoulinejad-Mousavi, Gian Marco Conte, Francisco Lopez-Jimenez, Bradley J Erickson","doi":"10.1007/s10278-024-01138-2","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence-enhanced identification of organs, lesions, and other structures in medical imaging is typically done using convolutional neural networks (CNNs) designed to make voxel-accurate segmentations of the region of interest. However, the labels required to train these CNNs are time-consuming to generate and require attention from subject matter experts to ensure quality. For tasks where voxel-level precision is not required, object detection models offer a viable alternative that can reduce annotation effort. Despite this potential application, there are few options for general-purpose object detection frameworks available for 3-D medical imaging. We report on MedYOLO, a 3-D object detection framework using the one-shot detection method of the YOLO family of models and designed for use with medical imaging. We tested this model on four different datasets: BRaTS, LIDC, an abdominal organ Computed tomography (CT) dataset, and an ECG-gated heart CT dataset. We found our models achieve high performance on a diverse range of structures even without hyperparameter tuning, reaching mean average precision (mAP) at intersection over union (IoU) 0.5 of 0.861 on BRaTS, 0.715 on the abdominal CT dataset, and 0.995 on the heart CT dataset. However, the models struggle with some structures, failing to converge on LIDC resulting in a mAP@0.5 of 0.0.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":"3208-3216"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612059/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01138-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence-enhanced identification of organs, lesions, and other structures in medical imaging is typically done using convolutional neural networks (CNNs) designed to make voxel-accurate segmentations of the region of interest. However, the labels required to train these CNNs are time-consuming to generate and require attention from subject matter experts to ensure quality. For tasks where voxel-level precision is not required, object detection models offer a viable alternative that can reduce annotation effort. Despite this potential application, there are few options for general-purpose object detection frameworks available for 3-D medical imaging. We report on MedYOLO, a 3-D object detection framework using the one-shot detection method of the YOLO family of models and designed for use with medical imaging. We tested this model on four different datasets: BRaTS, LIDC, an abdominal organ Computed tomography (CT) dataset, and an ECG-gated heart CT dataset. We found our models achieve high performance on a diverse range of structures even without hyperparameter tuning, reaching mean average precision (mAP) at intersection over union (IoU) 0.5 of 0.861 on BRaTS, 0.715 on the abdominal CT dataset, and 0.995 on the heart CT dataset. However, the models struggle with some structures, failing to converge on LIDC resulting in a mAP@0.5 of 0.0.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MedYOLO:医学图像对象检测框架。
在医学成像中,人工智能增强型器官、病变和其他结构的识别通常使用卷积神经网络(CNN)来完成,其目的是对感兴趣的区域进行体素精确分割。然而,训练这些卷积神经网络所需的标签生成非常耗时,而且需要主题专家的关注以确保质量。对于不需要体素级精度的任务,物体检测模型提供了一种可行的替代方法,可以减少标注工作。尽管有这样的潜在应用,但目前可用于三维医学成像的通用对象检测框架却很少。我们报告的 MedYOLO 是一种三维物体检测框架,采用 YOLO 系列模型的单次检测方法,设计用于医学成像。我们在四个不同的数据集上测试了该模型:BRaTS、LIDC、腹部器官计算机断层扫描 (CT) 数据集和心电图门控心脏 CT 数据集。我们发现,即使不调整超参数,我们的模型也能在各种结构上实现较高的性能,在 BRaTS、腹部 CT 数据集和心脏 CT 数据集上的平均精度(mAP)分别达到了 0.861、0.715 和 0.995。然而,这些模型在某些结构上表现不佳,无法在 LIDC 上收敛,导致 mAP@0.5 为 0.0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Faster Privacy-Preserving Medical Image Diagnosis Scheme with Machine Learning. Combining the Variational and Deep Learning Techniques for Classification of Video Capsule Endoscopic Images. Enhancing Radiographic Diagnosis: CycleGAN-Based Methods for Reducing Cast Shadow Artifacts in Wrist Radiographs. Governance Considerations for Point-of-Care Ultrasound: a HIMSS-SIIM Enterprise Imaging Community Whitepaper in Collaboration with AIUM. Adaptive Compression and Reconstruction for Multidimensional Medical Image Data: A Hybrid Algorithm for Enhanced Image Quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1