{"title":"Adaptive Compression and Reconstruction for Multidimensional Medical Image Data: A Hybrid Algorithm for Enhanced Image Quality.","authors":"Pauline Freeda David, Suganya Devi Kothandapani, Ganesh Kumar Pugalendhi","doi":"10.1007/s10278-024-01353-x","DOIUrl":null,"url":null,"abstract":"<p><p>Spatial regions within images typically hold greater priority over adjacent areas, especially in the context of medical images (MI) where minute details can have significant clinical implications. This research addresses the challenge of compressing medical image dimensions without compromising critical information by proposing an adaptive compression algorithm. The algorithm integrates a modified image enhancement module, clustering-based segmentation, and a variety of lossless and lossy compression techniques. Edge enhancement contrast limited adaptive histogram equalization (EE-CLAHE) and 2D adaptive anisotropic diffusion filter are employed to enhance and denoise the images, followed by adaptive expectation maximization clustering (AEMC) for segmentation into regions of interest (ROI) and non-ROI. The clustering process is optimized utilizing fuzzy c-means (FCM) and Otsu thresholding. Subsequently, distinct compression schemes are applied to ROI and non-ROI regions, such as Coiflet + Haar, Coiflet + Daubecheis, modified SPIHT Huffman, EZW, and SPIHT algorithms, to ensure effective storage and transmission while preserving diagnostic details. Experimental results demonstrate that the combination of the modified SPIHT Huffman algorithm for ROI and EZW for non-ROI yields superior reconstruction quality across various measures, enabling comprehensive analysis of multi-dimensional images from MRI, CT, and X-ray modalities.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01353-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial regions within images typically hold greater priority over adjacent areas, especially in the context of medical images (MI) where minute details can have significant clinical implications. This research addresses the challenge of compressing medical image dimensions without compromising critical information by proposing an adaptive compression algorithm. The algorithm integrates a modified image enhancement module, clustering-based segmentation, and a variety of lossless and lossy compression techniques. Edge enhancement contrast limited adaptive histogram equalization (EE-CLAHE) and 2D adaptive anisotropic diffusion filter are employed to enhance and denoise the images, followed by adaptive expectation maximization clustering (AEMC) for segmentation into regions of interest (ROI) and non-ROI. The clustering process is optimized utilizing fuzzy c-means (FCM) and Otsu thresholding. Subsequently, distinct compression schemes are applied to ROI and non-ROI regions, such as Coiflet + Haar, Coiflet + Daubecheis, modified SPIHT Huffman, EZW, and SPIHT algorithms, to ensure effective storage and transmission while preserving diagnostic details. Experimental results demonstrate that the combination of the modified SPIHT Huffman algorithm for ROI and EZW for non-ROI yields superior reconstruction quality across various measures, enabling comprehensive analysis of multi-dimensional images from MRI, CT, and X-ray modalities.