Automatic concrete slump prediction of concrete batching plant by deep learning

IF 6.2 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Developments in the Built Environment Pub Date : 2024-04-01 DOI:10.1016/j.dibe.2024.100474
Sarmad Idrees , Joshua Agung Nugraha , Shafaat Tahir , Kichang Choi , Jongeun Choi , Deug-Hyun Ryu , Jung-Hoon Kim
{"title":"Automatic concrete slump prediction of concrete batching plant by deep learning","authors":"Sarmad Idrees ,&nbsp;Joshua Agung Nugraha ,&nbsp;Shafaat Tahir ,&nbsp;Kichang Choi ,&nbsp;Jongeun Choi ,&nbsp;Deug-Hyun Ryu ,&nbsp;Jung-Hoon Kim","doi":"10.1016/j.dibe.2024.100474","DOIUrl":null,"url":null,"abstract":"<div><p>The workability of fresh concrete is highly important in terms of construction quality and safety. Slump tests are required every 120 m³, yet automated monitoring for each concrete batch remains unavailable in the actual concrete batching plant. To mitigate this issue, we propose an automatic slump prediction method based on the VGG16 neural network by analyzing the video from the final discharge hopper of the batching plant. Additionally, Explainable AI (XAI) is adopted to evaluate and validate our automatic concrete quality inspection approach. Iteratively examining XAI outputs and applying necessary adjustments in data preprocessing helps to achieve better overall performance. The proposed video classification method performed by averaging over the image-level predictions can classify the concrete into four slump classes with an average precision of 85% and an average F1 score of 87%. This demonstrates the possibility of continuous quality evaluation for all concrete produced in the concrete batching plant.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001558/pdfft?md5=002061d588c45fc35b7e0df5302c666f&pid=1-s2.0-S2666165924001558-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924001558","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The workability of fresh concrete is highly important in terms of construction quality and safety. Slump tests are required every 120 m³, yet automated monitoring for each concrete batch remains unavailable in the actual concrete batching plant. To mitigate this issue, we propose an automatic slump prediction method based on the VGG16 neural network by analyzing the video from the final discharge hopper of the batching plant. Additionally, Explainable AI (XAI) is adopted to evaluate and validate our automatic concrete quality inspection approach. Iteratively examining XAI outputs and applying necessary adjustments in data preprocessing helps to achieve better overall performance. The proposed video classification method performed by averaging over the image-level predictions can classify the concrete into four slump classes with an average precision of 85% and an average F1 score of 87%. This demonstrates the possibility of continuous quality evaluation for all concrete produced in the concrete batching plant.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习自动预测混凝土搅拌站的混凝土坍落度
就施工质量和安全而言,新拌混凝土的工作性非常重要。每 120 立方米混凝土都需要进行坍落度测试,但在实际的混凝土搅拌站中仍无法对每批混凝土进行自动监测。为了缓解这一问题,我们提出了一种基于 VGG16 神经网络的自动坍落度预测方法,该方法通过分析配料站最后卸料斗的视频来实现。此外,我们还采用了可解释人工智能(XAI)来评估和验证我们的自动混凝土质量检测方法。迭代检查 XAI 输出并在数据预处理中应用必要的调整,有助于实现更好的整体性能。所提出的视频分类方法通过对图像级预测进行平均处理,可将混凝土分为四个坍落度等级,平均精度为 85%,平均 F1 分数为 87%。这证明了对混凝土搅拌站生产的所有混凝土进行连续质量评估的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
1.20%
发文量
31
审稿时长
22 days
期刊介绍: Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.
期刊最新文献
Extending Information Delivery Specifications for digital building permit requirements Effect of shell composition on watertightness and mechanical performance of cement-based capsules used as self-healing additives of cement Enhancing dynamic mechanical properties of cemented lithium mica tailings backfill with alkaline rice straw fibers: Experimental investigation and microscopic analysis Physicochemical properties of CO2-cured belite-rich cement with electric arc furnace reduction slag as a partial replacement Experimental modal identification of a pedestrian bridge through drive-by monitoring integrated with shared-mobility vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1