Exploring the design space of discontinuous metal matrix composites through domain-knowledge enhanced machine learning

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Extreme Mechanics Letters Pub Date : 2024-05-29 DOI:10.1016/j.eml.2024.102176
Hailin Deng , Qingkun Zhao , Xiang Gao , Hua-Xin Peng , Haofei Zhou
{"title":"Exploring the design space of discontinuous metal matrix composites through domain-knowledge enhanced machine learning","authors":"Hailin Deng ,&nbsp;Qingkun Zhao ,&nbsp;Xiang Gao ,&nbsp;Hua-Xin Peng ,&nbsp;Haofei Zhou","doi":"10.1016/j.eml.2024.102176","DOIUrl":null,"url":null,"abstract":"<div><p>Tailored reinforcement architectures in discontinuous metal matrix composites (DMMCs) offer superior mechanical performance with broad scientific and financial interests. This study presents a domain-knowledge enhanced machine learning approach to efficiently explore the design space of Al-SiC DMMCs for optimization. A substantial dataset containing 140,000 instances, resembling characteristic reinforcement configurations and variants, is generated using a series of algorithms. Employing high-throughput finite element analysis, the elastic properties of each configuration are estimated. Statistical analysis reveals that a more homogeneous distributed reinforcement contributes to mechanical stability, whereas configurations with extreme performance tend to have inhomogeneous reinforcement distribution. A deep residual neural network trained on this dataset accurately learns the structure-property correlations. Coupled with a genetic algorithm, the framework identifies optimal configurations across different volume fractions for maximizing/minimizing properties including tensile modulus, shear modulus, and Poisson's ratio. Comparative analysis shows the incorporation of domain knowledge improves data quality, facilitating more effective design space exploration. This study contributes to advancing composite materials design, particularly for next-generation high-performance DMMCs.</p></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"70 ","pages":"Article 102176"},"PeriodicalIF":4.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624000567","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tailored reinforcement architectures in discontinuous metal matrix composites (DMMCs) offer superior mechanical performance with broad scientific and financial interests. This study presents a domain-knowledge enhanced machine learning approach to efficiently explore the design space of Al-SiC DMMCs for optimization. A substantial dataset containing 140,000 instances, resembling characteristic reinforcement configurations and variants, is generated using a series of algorithms. Employing high-throughput finite element analysis, the elastic properties of each configuration are estimated. Statistical analysis reveals that a more homogeneous distributed reinforcement contributes to mechanical stability, whereas configurations with extreme performance tend to have inhomogeneous reinforcement distribution. A deep residual neural network trained on this dataset accurately learns the structure-property correlations. Coupled with a genetic algorithm, the framework identifies optimal configurations across different volume fractions for maximizing/minimizing properties including tensile modulus, shear modulus, and Poisson's ratio. Comparative analysis shows the incorporation of domain knowledge improves data quality, facilitating more effective design space exploration. This study contributes to advancing composite materials design, particularly for next-generation high-performance DMMCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过领域知识增强型机器学习探索非连续金属基复合材料的设计空间
非连续金属基复合材料(DMMC)中量身定制的增强结构具有卓越的机械性能,同时还能带来广泛的科学和经济利益。本研究提出了一种领域知识增强型机器学习方法,用于有效探索 Al-SiC DMMC 的优化设计空间。使用一系列算法生成了一个包含 140,000 个实例的大型数据集,这些实例类似于特征强化配置和变体。通过高通量有限元分析,对每种配置的弹性特性进行了估算。统计分析表明,分布更均匀的加固材料有助于提高机械稳定性,而具有极端性能的配置往往具有不均匀的加固材料分布。在此数据集上训练的深度残差神经网络可以准确地学习结构-性能相关性。该框架与遗传算法相结合,确定了不同体积分数下的最佳配置,以实现拉伸模量、剪切模量和泊松比等性能的最大化/最小化。对比分析表明,领域知识的融入提高了数据质量,促进了更有效的设计空间探索。这项研究有助于推进复合材料设计,特别是下一代高性能 DMMC 的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
期刊最新文献
Origami electronic membranes as highly shape-morphable mechanical and environmental sensing systems Atomic insights into the ductile–brittle competition of cracks under dissolution A large atomic partition model for materials discovery A model for micro-scale propulsion using flexible rotating flagella Harnessing centrifugal and Euler forces for tunable buckling of a rotating elastica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1