{"title":"The negative mycorrhizal growth response of host plants to Acaulospora cf. morrowiae irrespective of soil P availability","authors":"Thasneem Soree , Ph Baleshwor Sharma , Wittaya Kaonongbua , Lompong Klinnawee","doi":"10.1016/j.rhisph.2024.100909","DOIUrl":null,"url":null,"abstract":"<div><p><em>Acaulospora</em> is one of the dominant genera of AMF associated with waterlogged vegetation, and its dominance was also revealed in the roots of a lowland rice variety indigenous to Southern Thailand. In a preliminary finding, the isolated <em>Acaulospora</em> showed growth suppression of lowland <em>japonica</em> Nipponbare rice, even in high phosphorus (P) soil. The isolated <em>Acaulospora</em> was identified to species level and assigned as <em>Acaulospora</em> cf. <em>morrowiae</em> Phattalung 1. The mycorrhizal growth response (MGR) of an upland <em>indica</em> rice and maize to <em>A.</em> cf. <em>morrowiae</em> was further tested under low and high P conditions. AMF colonization rates were high, over 70%, in both cases, with perfect arbuscule and vesicle formation; however, growth depression of the host plants was markedly observed. Reduced nutrient accumulation in both shoots and roots of host plants was noted, as depicted by nutrient profiling. To further substantiate the negative MGR to inoculation of <em>A.</em> cf. <em>morrowiae</em>, a standardized in vivo bioassay was performed using maize seedlings in a sand and perlite mixture, ensuring low P with 20 mg kg<sup>−1</sup> P in the form of insoluble CaH<sub>2</sub>PO<sub>4</sub>. Shoot and root growth of maize seedlings were reduced at 23.7 and 36.1%, respectively, by the inoculation of AMF. The nutrient-parasitic nature of this AMF results from unproportioned drainage of photosynthates, indicating an unbalanced primary/nutrient trade-off system between symbionts. The overall associative merits or demerits of <em>A.</em> cf. <em>morrowiae</em> cannot be ruled out without thorough investigations considering several ecological perspectives and its fitter survival and dominance in waterlogged soils.</p></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"30 ","pages":"Article 100909"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rhizosphere","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452219824000648","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Acaulospora is one of the dominant genera of AMF associated with waterlogged vegetation, and its dominance was also revealed in the roots of a lowland rice variety indigenous to Southern Thailand. In a preliminary finding, the isolated Acaulospora showed growth suppression of lowland japonica Nipponbare rice, even in high phosphorus (P) soil. The isolated Acaulospora was identified to species level and assigned as Acaulospora cf. morrowiae Phattalung 1. The mycorrhizal growth response (MGR) of an upland indica rice and maize to A. cf. morrowiae was further tested under low and high P conditions. AMF colonization rates were high, over 70%, in both cases, with perfect arbuscule and vesicle formation; however, growth depression of the host plants was markedly observed. Reduced nutrient accumulation in both shoots and roots of host plants was noted, as depicted by nutrient profiling. To further substantiate the negative MGR to inoculation of A. cf. morrowiae, a standardized in vivo bioassay was performed using maize seedlings in a sand and perlite mixture, ensuring low P with 20 mg kg−1 P in the form of insoluble CaH2PO4. Shoot and root growth of maize seedlings were reduced at 23.7 and 36.1%, respectively, by the inoculation of AMF. The nutrient-parasitic nature of this AMF results from unproportioned drainage of photosynthates, indicating an unbalanced primary/nutrient trade-off system between symbionts. The overall associative merits or demerits of A. cf. morrowiae cannot be ruled out without thorough investigations considering several ecological perspectives and its fitter survival and dominance in waterlogged soils.
RhizosphereAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
5.70
自引率
8.10%
发文量
155
审稿时长
29 days
期刊介绍:
Rhizosphere aims to advance the frontier of our understanding of plant-soil interactions. Rhizosphere is a multidisciplinary journal that publishes research on the interactions between plant roots, soil organisms, nutrients, and water. Except carbon fixation by photosynthesis, plants obtain all other elements primarily from soil through roots.
We are beginning to understand how communications at the rhizosphere, with soil organisms and other plant species, affect root exudates and nutrient uptake. This rapidly evolving subject utilizes molecular biology and genomic tools, food web or community structure manipulations, high performance liquid chromatography, isotopic analysis, diverse spectroscopic analytics, tomography and other microscopy, complex statistical and modeling tools.