Cross-scale targeted remodeling of neurovascular and neurometabolic coupling in Alzheimer’s disease by natural self-assembled SIRT1 activator

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Today Pub Date : 2024-06-07 DOI:10.1016/j.nantod.2024.102340
Dongju Zhao , Fan Yang , Yining Liu , Meng Cheng , Ziyao Chen , Caihua Ye , Jin Chang , Yan Dou
{"title":"Cross-scale targeted remodeling of neurovascular and neurometabolic coupling in Alzheimer’s disease by natural self-assembled SIRT1 activator","authors":"Dongju Zhao ,&nbsp;Fan Yang ,&nbsp;Yining Liu ,&nbsp;Meng Cheng ,&nbsp;Ziyao Chen ,&nbsp;Caihua Ye ,&nbsp;Jin Chang ,&nbsp;Yan Dou","doi":"10.1016/j.nantod.2024.102340","DOIUrl":null,"url":null,"abstract":"<div><p>Chronic neuromicrovascular dysfunction and its induced multifaceted neuropathology involving the interaction of cellular differential pathogenic mechanisms pose challenges to the precise treatment of Alzheimer’s disease (AD). Here we report the development of an ellagic acid-derived self-assembled micellar SIRT1 activator (REn) that enables cross-scale targeted remodeling of neurovascular and neurometabolic coupling in AD. Efficient transcytosis of the receptor for advanced glycation endproducts by modified peptides allows for programmed delivery of REn to cerebral microvessels and parenchymal neurons. The resulting SIRT1 cascade activation enhances endothelial nitric oxide signaling-mediated cerebral blood flow and the blood-brain barrier integrity, while promoting neuronal mitochondrial biogenesis and glucose metabolic patterns toward oxidative phosphorylation. This multipronged remodeling strategy achieves a cooperative normalization of brain energy supply and β-amyloid clearance in AD mice, showing profound improvement in cognitive impairment. This work provides an advanced pharmacological option for cross-scale targeted treatment of neurodegenerative diseases associated with neurovascular dysfunction.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":null,"pages":null},"PeriodicalIF":13.2000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224001956","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic neuromicrovascular dysfunction and its induced multifaceted neuropathology involving the interaction of cellular differential pathogenic mechanisms pose challenges to the precise treatment of Alzheimer’s disease (AD). Here we report the development of an ellagic acid-derived self-assembled micellar SIRT1 activator (REn) that enables cross-scale targeted remodeling of neurovascular and neurometabolic coupling in AD. Efficient transcytosis of the receptor for advanced glycation endproducts by modified peptides allows for programmed delivery of REn to cerebral microvessels and parenchymal neurons. The resulting SIRT1 cascade activation enhances endothelial nitric oxide signaling-mediated cerebral blood flow and the blood-brain barrier integrity, while promoting neuronal mitochondrial biogenesis and glucose metabolic patterns toward oxidative phosphorylation. This multipronged remodeling strategy achieves a cooperative normalization of brain energy supply and β-amyloid clearance in AD mice, showing profound improvement in cognitive impairment. This work provides an advanced pharmacological option for cross-scale targeted treatment of neurodegenerative diseases associated with neurovascular dysfunction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天然自组装 SIRT1 激活剂对阿尔茨海默病神经血管和神经代谢耦合的跨尺度定向重塑
慢性神经微血管功能障碍及其诱发的多方面神经病理学涉及细胞不同致病机制的相互作用,给阿尔茨海默病(AD)的精确治疗带来了挑战。在这里,我们报告了一种鞣花酸衍生自组装胶束 SIRT1 激活剂(REn)的开发情况,这种激活剂能对 AD 的神经血管和神经代谢耦合进行跨尺度的靶向重塑。通过修饰肽对高级糖化终产物受体的高效转囊作用,可将 REn 按程序输送到脑微血管和实质神经元。由此激活的 SIRT1 级联可增强内皮一氧化氮信号介导的脑血流量和血脑屏障的完整性,同时促进神经元线粒体生物生成和葡萄糖代谢模式向氧化磷酸化方向发展。这种多管齐下的重塑策略实现了AD小鼠大脑能量供应和β-淀粉样蛋白清除的协同正常化,并显著改善了认知障碍。这项工作为与神经血管功能障碍相关的神经退行性疾病的跨规模靶向治疗提供了一种先进的药理学选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
期刊最新文献
Single active Au1O5 clusters for metabolism-inspired sepsis management through immune regulation Metal-organic frameworks derived emerging theranostic platforms Nitrogen-doped bismuth ferrite nanozymes: Tailored electronic structure for organic pollutant degradation Interfacial energy-mediated stability of liquid barrier for sustainable and efficient anti-clogging of urinary catheter Biodegradable conductive IPN in situ cryogels with anisotropic microchannels and sequential delivery of dual-growth factors for skeletal muscle regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1