{"title":"Spatiotemporal Dynamics of COVID-19 Pandemic City Lockdown: Insights From Nighttime Light Remote Sensing","authors":"Luguang Jiang, Ye Liu","doi":"10.1029/2024GH001034","DOIUrl":null,"url":null,"abstract":"<p>The global COVID-19 outbreak severely hampered the growth of the global economy, prompting the implementation of the strictest prevention policies in China. Establishing a significant relationship between changes in nighttime light and COVID-19 lockdowns from a geospatial perspective is essential. In light of nighttime light remote sensing, we evaluated the spatiotemporal dynamic effects of COVID-19 city lockdowns on human activity intensity in the Zhengzhou region. Prior to the COVID-19 outbreak, nighttime light in the Zhengzhou region maintained a significant growth trend, even under regular control measures. However, following the October 2022 COVID-19 lockdown, nighttime light experienced a substantial decrease. In the central area of Zhengzhou, nighttime light decreased by at least 18% compared to pre-lockdown levels, while in the sub-center, the decrease was around 14%. The areas where nighttime light decreased the most in the central region were primarily within a 15 km radius, while in the sub-center, the decrease was concentrated within a 5 km radius. These changes in both statistical data and nighttime light underscored the significant impact of the COVID-19 lockdown on economic activities in the Zhengzhou region.</p>","PeriodicalId":48618,"journal":{"name":"Geohealth","volume":"8 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GH001034","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geohealth","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GH001034","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The global COVID-19 outbreak severely hampered the growth of the global economy, prompting the implementation of the strictest prevention policies in China. Establishing a significant relationship between changes in nighttime light and COVID-19 lockdowns from a geospatial perspective is essential. In light of nighttime light remote sensing, we evaluated the spatiotemporal dynamic effects of COVID-19 city lockdowns on human activity intensity in the Zhengzhou region. Prior to the COVID-19 outbreak, nighttime light in the Zhengzhou region maintained a significant growth trend, even under regular control measures. However, following the October 2022 COVID-19 lockdown, nighttime light experienced a substantial decrease. In the central area of Zhengzhou, nighttime light decreased by at least 18% compared to pre-lockdown levels, while in the sub-center, the decrease was around 14%. The areas where nighttime light decreased the most in the central region were primarily within a 15 km radius, while in the sub-center, the decrease was concentrated within a 5 km radius. These changes in both statistical data and nighttime light underscored the significant impact of the COVID-19 lockdown on economic activities in the Zhengzhou region.
期刊介绍:
GeoHealth will publish original research, reviews, policy discussions, and commentaries that cover the growing science on the interface among the Earth, atmospheric, oceans and environmental sciences, ecology, and the agricultural and health sciences. The journal will cover a wide variety of global and local issues including the impacts of climate change on human, agricultural, and ecosystem health, air and water pollution, environmental persistence of herbicides and pesticides, radiation and health, geomedicine, and the health effects of disasters. Many of these topics and others are of critical importance in the developing world and all require bringing together leading research across multiple disciplines.