Genomic profiling of biosynthetic potentials of medicinal secondary metabolites for ‘Aliisedimentitalea scapharcae’ KCTC 42119T, isolated from ark shell
Jin-Cheng Rong , Lin-Lin Cui , Na Li , Mao-Li Yi , Bo-Tao Huang , Qi Zhao
{"title":"Genomic profiling of biosynthetic potentials of medicinal secondary metabolites for ‘Aliisedimentitalea scapharcae’ KCTC 42119T, isolated from ark shell","authors":"Jin-Cheng Rong , Lin-Lin Cui , Na Li , Mao-Li Yi , Bo-Tao Huang , Qi Zhao","doi":"10.1016/j.margen.2024.101124","DOIUrl":null,"url":null,"abstract":"<div><p>Microorganisms living with higher organisms are valuable sources of bioactive substances like antibiotics, which could assist them competing for more and better nutrients or space. Here, we focused on a marine animal-associated bacterium, ‘<em>Aliisedimentitalea scapharcae</em>’ KCTC 42119<sup>T</sup>, which was isolated from ark shell collected from Gang-Jin bay of South Korea. We evaluated its biosynthetic potentials of medicinal secondary metabolites by <em>de novo</em> genome sequencing. The complete genome of strain KCTC 42119<sup>T</sup> sequenced is 5,083,900 bp and is comprised of one circular chromosome and four circular plasmids. Functional genome analysis by antiSMASH v7.1.0 showed that there are nine biosynthetic gene clusters encoded on the chromosome. The annotated secondary metabolites include antibiotic corynecin, cytoprotective ectoine and antineoplastic ET-743 (Yondelis), which suggested strain KCTC 42119<sup>T</sup> possesses potentials to synthesize a series of secondary metabolites of pharmaceutical utility. Genome analysis of ‘<em>A. scapharcae</em>’ also provides more insights into mining bioactive substances from animal-associated microorganisms.</p></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":"76 ","pages":"Article 101124"},"PeriodicalIF":1.3000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778724000424","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Microorganisms living with higher organisms are valuable sources of bioactive substances like antibiotics, which could assist them competing for more and better nutrients or space. Here, we focused on a marine animal-associated bacterium, ‘Aliisedimentitalea scapharcae’ KCTC 42119T, which was isolated from ark shell collected from Gang-Jin bay of South Korea. We evaluated its biosynthetic potentials of medicinal secondary metabolites by de novo genome sequencing. The complete genome of strain KCTC 42119T sequenced is 5,083,900 bp and is comprised of one circular chromosome and four circular plasmids. Functional genome analysis by antiSMASH v7.1.0 showed that there are nine biosynthetic gene clusters encoded on the chromosome. The annotated secondary metabolites include antibiotic corynecin, cytoprotective ectoine and antineoplastic ET-743 (Yondelis), which suggested strain KCTC 42119T possesses potentials to synthesize a series of secondary metabolites of pharmaceutical utility. Genome analysis of ‘A. scapharcae’ also provides more insights into mining bioactive substances from animal-associated microorganisms.
期刊介绍:
The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include:
• Population genomics and ecology
• Evolutionary and developmental genomics
• Comparative genomics
• Metagenomics
• Environmental genomics
• Systems biology
More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.