Streptomyces FIM95-F1, an actinomycete originating from mangroves of Quanzhou bay, exhibits the capability to produce the antifungal antibiotic scopafungin. Here, the complete genome of Streptomyces sp. FIM95-F1 is presented with a GC content of 71.04 %, comprising a 9,718,239-bp linear chromosome, 8236 protein-coding genes, 18 rRNA genes, 64 tRNA genes, 2 prophages, and 58 CRISPR regions. In silico analysis revealed the presence of 42 biosynthetic gene clusters (BGCs), the majority of which demonstrated similarity to both known and novel BGCs responsible for the biosynthesis of previously known and novel bioactive agents of microbial origin. A comprehensive comparison between the scopafungin BGC and niphimycin BGC has indicated a potential shared pathway for the biosynthesis of scopafungin. One of the intriguing findings of this study was the discovery of at least two novel BGCs (namely Cluster 26 and Cluster 32) present within biosynthetic gene clusters. Our findings suggest that Streptomyces sp. FIM95-F1 possesses significant potential in producing a diverse array of both known and novel bioactive compounds, which could be valuable in the field of drug discovery.
Fucoidan, the main polysaccharide in various species of brown seaweed, has a high annual production. It is an important source of marine organic carbon and exhibits diverse biological activities and significant application potential. Rhodopirellula sp. P2, a novel marine bacterium of the phylum Planctomycetota, was isolated from intertidal algae samples collected from the Weihai coast, the Yellow Sea, China. The strain P2 is a Gram-negative, aerobic, and pear-shaped bacterium. Here, we report the complete genome sequence of Rhodopirellula sp. P2. The genome of strain P2 consists of a single circular chromosome with 7,291,416 bp and a GC content of 57.38 %, including 5462 protein-coding genes, 2 rRNA genes, and 48 tRNA genes. Genomic analysis revealed that strain P2 possessed 173 CAZymes and 106 sulfatases, indicating that strain P2 has the potential ability to utilize multiple polysaccharides, especially hydrolyze fucoidan to fucose. The genome of strain P2 also encodes a gene cluster related to bacterial microcompartment, suggesting the ability of strain P2 to metabolize fucose. These results enhance the understanding of the diversity and ecological functions of Planctomycetota, and also facilitate the exploitation of Planctomycetota and enzyme resources to utilize fucoidan. This study provides genetic insights into fucoidan catabolism by Planctomycetota, expanding our understanding of fucoidan-degrading microbial groups.
A bacterium Gymnodinialimonas sp. 57CJ19, was isolated from the intertidal sediments of Aoshan Bay, and further assays showed that it has the ability to degrade the antibacterial preservative 4-hydroxybenzoate. The complete genome sequence was sequenced, and phylogenomic analyses indicated that strain 57CJ19 represents a potential novel species in the genus Gymnodinialimonas (family Rhodobacteraceae). Its genome contains a 3,861,607-bp circular chromosome with 61.25% G + C content. Gene prediction revealed 3716 protein-encoding genes, 41 tRNA genes, 3 rrn operons, and 3 non-coding RNA genes. Functional annotation revealed a complete metabolic pathway for 4-hydroxybenzoate. The genome sequence of strain 57CJ19 provides new insights into the potential and underlying genomic basis of aromatic compound pollutant degradation by marine bacteria.