Jeremy Brossier, Francesca Altieri, Maria Cristina De Sanctis, Alessandro Frigeri, Marco Ferrari, Simone De Angelis, Enrico Bruschini, The Ma_MISS team
{"title":"Clay mineralogy in west Chryse Planitia, Mars: Comparison with present and future landing sites","authors":"Jeremy Brossier, Francesca Altieri, Maria Cristina De Sanctis, Alessandro Frigeri, Marco Ferrari, Simone De Angelis, Enrico Bruschini, The Ma_MISS team","doi":"10.1016/j.pss.2024.105924","DOIUrl":null,"url":null,"abstract":"<div><p>On Mars, the well-known crustal dichotomy marks the boundary between the old southern highlands and the younger northern lowlands. Among these lowlands, Chryse Planitia resembles a quasi-circular basin surrounded by several highlands, and blends into Acidalia Planitia, another flat lowland located farther north. The transition area between these highlands and the Chryse basin is often designated as “<em>circum-Chryse Planitia</em>”, and is the terminus for many outflow channels. Infrared datasets display several sites therein with extensive clay-bearing outcrops, further testifying for aqueous activity on early Mars – notably around Mawrth Vallis, Oxia Planum and Xanthe Terra. In this study, we investigate clay-bearing outcrops identified along the western margins of circum-Chryse basin, often overlooked in the Martian literature. We also compare them with outcrops found in other regions along the crustal dichotomy and relevant in the Martian literature, such as Oxia Planum, Mawrth Vallis and Nili Fossae. Investigating such deposits is crucial for astrobiological perspectives, as they are appealing targets to search for organic compounds possibly stored throughout the rocks and soils. Fe,Mg-rich clays generally result from the interaction of liquid water with rocks under low temperatures, moderate pH levels and neutral to reducing conditions, factors favorable for life. Here, the clay minerals detected in west Chryse Planitia are consistent with either ferrosaponites or vermiculites associated with hydrobiotite, as recently inferred in Oxia Planum and north Xanthe Terra. Diverse alteration pathways might be involved based on either of these clay species. The clay-bearing rocks crop out in isolated hills in Lunae Planum, and along inverted channels and small craters in Tempe Terra. Further geologic investigations in circum-Chryse Planitia should certainly provide new clues on their origin and weathering conditions, while supporting the upcoming ExoMars rover mission and other future explorations.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"247 ","pages":"Article 105924"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324000886","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
On Mars, the well-known crustal dichotomy marks the boundary between the old southern highlands and the younger northern lowlands. Among these lowlands, Chryse Planitia resembles a quasi-circular basin surrounded by several highlands, and blends into Acidalia Planitia, another flat lowland located farther north. The transition area between these highlands and the Chryse basin is often designated as “circum-Chryse Planitia”, and is the terminus for many outflow channels. Infrared datasets display several sites therein with extensive clay-bearing outcrops, further testifying for aqueous activity on early Mars – notably around Mawrth Vallis, Oxia Planum and Xanthe Terra. In this study, we investigate clay-bearing outcrops identified along the western margins of circum-Chryse basin, often overlooked in the Martian literature. We also compare them with outcrops found in other regions along the crustal dichotomy and relevant in the Martian literature, such as Oxia Planum, Mawrth Vallis and Nili Fossae. Investigating such deposits is crucial for astrobiological perspectives, as they are appealing targets to search for organic compounds possibly stored throughout the rocks and soils. Fe,Mg-rich clays generally result from the interaction of liquid water with rocks under low temperatures, moderate pH levels and neutral to reducing conditions, factors favorable for life. Here, the clay minerals detected in west Chryse Planitia are consistent with either ferrosaponites or vermiculites associated with hydrobiotite, as recently inferred in Oxia Planum and north Xanthe Terra. Diverse alteration pathways might be involved based on either of these clay species. The clay-bearing rocks crop out in isolated hills in Lunae Planum, and along inverted channels and small craters in Tempe Terra. Further geologic investigations in circum-Chryse Planitia should certainly provide new clues on their origin and weathering conditions, while supporting the upcoming ExoMars rover mission and other future explorations.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research