Xinyang Li , Shengjie Liang , Masanao Inokoshi , Shikai Zhao , Guang Hong , Chenmin Yao , Cui Huang
{"title":"Different surface treatments and adhesive monomers for zirconia-resin bonds: A systematic review and network meta-analysis","authors":"Xinyang Li , Shengjie Liang , Masanao Inokoshi , Shikai Zhao , Guang Hong , Chenmin Yao , Cui Huang","doi":"10.1016/j.jdsr.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>This review examined the efficacy of surface treatments and adhesive monomers for enhancing zirconia-resin bond strength. A comprehensive literature search in PubMed, Embase, Web of Science, Scopus, and the Cochrane Library yielded relevant in vitro studies. Employing pairwise and Bayesian network meta-analyses, 77 articles meeting inclusion criteria were analyzed. Gas plasma was found to be ineffective, while treatments including air abrasion, silica coating, laser, selective infiltration etching, hot etching showed varied effectiveness. Air abrasion with finer particles (25–53 µm) showed higher immediate bond strength than larger particles (110–150 µm), with no significant difference post-aging. The Rocatec silica coating system outperformed the CoJet system in both immediate and long-term bond strength. Adhesives containing 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) were superior to other acidic monomers. The application of 2-hydroxyethyl methacrylate and silane did not improve bonding performance. Notably, 91.2 % of bonds weakened after aging, but this effect was less pronounced with air abrasion or silica coating. The findings highlight the effectiveness of air abrasion, silica coating, selective infiltration etching, hot etching, and laser treatment in improving bond strength, with 10-MDP in bonding agents enhancing zirconia bonding efficacy.</p></div>","PeriodicalId":51334,"journal":{"name":"Japanese Dental Science Review","volume":"60 ","pages":"Pages 175-189"},"PeriodicalIF":5.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1882761624000103/pdfft?md5=d1d408522ca4e2355dba04881a836291&pid=1-s2.0-S1882761624000103-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Dental Science Review","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1882761624000103","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
This review examined the efficacy of surface treatments and adhesive monomers for enhancing zirconia-resin bond strength. A comprehensive literature search in PubMed, Embase, Web of Science, Scopus, and the Cochrane Library yielded relevant in vitro studies. Employing pairwise and Bayesian network meta-analyses, 77 articles meeting inclusion criteria were analyzed. Gas plasma was found to be ineffective, while treatments including air abrasion, silica coating, laser, selective infiltration etching, hot etching showed varied effectiveness. Air abrasion with finer particles (25–53 µm) showed higher immediate bond strength than larger particles (110–150 µm), with no significant difference post-aging. The Rocatec silica coating system outperformed the CoJet system in both immediate and long-term bond strength. Adhesives containing 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) were superior to other acidic monomers. The application of 2-hydroxyethyl methacrylate and silane did not improve bonding performance. Notably, 91.2 % of bonds weakened after aging, but this effect was less pronounced with air abrasion or silica coating. The findings highlight the effectiveness of air abrasion, silica coating, selective infiltration etching, hot etching, and laser treatment in improving bond strength, with 10-MDP in bonding agents enhancing zirconia bonding efficacy.
期刊介绍:
The Japanese Dental Science Review is published by the Japanese Association for Dental Science aiming to introduce the modern aspects of the dental basic and clinical sciences in Japan, and to share and discuss the update information with foreign researchers and dentists for further development of dentistry. In principle, papers are written and submitted on the invitation of one of the Editors, although the Editors would be glad to receive suggestions. Proposals for review articles should be sent by the authors to one of the Editors by e-mail. All submitted papers are subject to the peer- refereeing process.