This systematic review evaluated the effect of different hydrofluoric acid (HF) etching regimens and a self-etch ceramic primer (SECP) on the flexural strength (FS) and fatigue failure load (FFL) of glass-ceramic materials.The identification of relevant studies was conducted by two authors in five databases: PubMED, Scopus, Web Of Science, LILACS and Virtual Health Library (BVS) until July 2022 with no year limit. The analysis was conducted in RevMan 5.4.1 Software (Cochrane Collaboration) using Random effect model at 5 %. The risk of bias of the included studies were assessed. From the 5349 articles identified, 34 were included for quantitative analysis. Meta-analysis showed that for predominantly glassy ceramics, etching with HF 5 % had no significant impact on FS, however, HF acid etching with concentrations greater than 5 % negatively impacted FS. For lithium disilicate glass-ceramics (LDGC) HF acid etching, negatively influenced FS, while increasing the FFL. HF etching negatively affected FS of hybrid ceramics. The self-etch ceramic primer and HF acid etching showed a similar impact on FFL and FS. This meta-analysis indicates that the impact of SECP and HF acid etching on the mechanical behavior of glass ceramics is material-dependent.
Most reports on duplicate dentures are introduction to fabrication methods or clinical case reports. Only a few studies have verified their clinical effectiveness; hence, evidence to construct useful clinical guidelines for duplicate denture use is lacking. This review aimed to comprehensively investigate reports on duplicate dentures to accumulate evidences that will contribute to the formulation of clinical practice guidelines. Duplicate dentures are effectively used for impression making and bite registration when fabricating new dentures, thereby reducing the number of clinic visits and treatment time. Duplicate denture can also be used as temporary or new dentures. Older people in whom various adaptive abilities have declined, may find it difficult to adjust to new dentures and experience stress, even if the shape is appropriate. Duplicate dentures, which reproduces the shape of old dentures that they are used to, have the advantage of being more familiar to older people and less stressful. When manufacturing duplicate dentures, digital methods such as milling and three-dimensional printing are superior to conventional methods regarding working time and cost. A notable advantage of the digital method is that the denture shape can be saved as digital data, and the denture can be easily duplicated if lost.
This review examined the efficacy of surface treatments and adhesive monomers for enhancing zirconia-resin bond strength. A comprehensive literature search in PubMed, Embase, Web of Science, Scopus, and the Cochrane Library yielded relevant in vitro studies. Employing pairwise and Bayesian network meta-analyses, 77 articles meeting inclusion criteria were analyzed. Gas plasma was found to be ineffective, while treatments including air abrasion, silica coating, laser, selective infiltration etching, hot etching showed varied effectiveness. Air abrasion with finer particles (25–53 µm) showed higher immediate bond strength than larger particles (110–150 µm), with no significant difference post-aging. The Rocatec silica coating system outperformed the CoJet system in both immediate and long-term bond strength. Adhesives containing 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) were superior to other acidic monomers. The application of 2-hydroxyethyl methacrylate and silane did not improve bonding performance. Notably, 91.2 % of bonds weakened after aging, but this effect was less pronounced with air abrasion or silica coating. The findings highlight the effectiveness of air abrasion, silica coating, selective infiltration etching, hot etching, and laser treatment in improving bond strength, with 10-MDP in bonding agents enhancing zirconia bonding efficacy.
Peri-implant diseases, characterized by inflammatory conditions affecting peri-implant tissues, encompass peri-implant mucositis and peri-implantitis. Peri-implant mucositis is an inflammatory lesion limited to the mucosa around an implant, while peri-implantitis extends from the mucosa to the supporting bone, causing a loss of osseointegration. For non-surgical treatments, we tested the null hypothesis that the presence or absence of air-polishing made no difference. The study focused on randomized controlled trials (RCTs) comparing air-polishing with mechanical or ultrasonic debridement, evaluating outcomes such as bleeding on probing (BOP), probing depth (PD), plaque index/plaque score (PI/PS), clinical attachment level (CAL), bone loss, and mucosal recession (MR). Two independent reviewers conducted data extraction and quality assessments, considering short-term (<6 months) and long-term (≥6 months) follow-up periods. After screening, ten articles were included in the meta-analysis. In nonsurgical peri-implant disease management, air-polishing moderately mitigated short-term PI/PS for peri-implant mucositis and showed a similar improvement in long-term BOP and bone loss for peri-implantitis compared to the control group. The Egger test found no evidence of publication bias except for the long-term PI/PS of peri-implant mucositis. Leave-one-out analysis confirmed the stability of the results. The findings highlight the need for future research with longer-term follow-up and high-quality, multi-center, large-sample RCTs.
The scoping review objectives were to: 1) investigate the caries preventive potential of professionally deliverable fluoride (F)-containing agents with incorporated arginine (Arg); and 2) identify the future scope of research on Arg-F interventions for caries prevention. Of 150 identified records, 7 articles (6 in vitro investigations and 1 scoping review) were included for a complete review; with no clinical studies with/without appraisal. Arginine variants (L-Arg/Arg.HCl at 1% to 10% w/v.) were examined for a potential professional application aimed at caries prevention, as reported with in vitro studies. Of the included articles, four in vitro studies explored L-Arg enriched 5% NaF varnish (Duraphat®) as a promising caries preventive agent, while only one considered incorporating L-Arg in MI varnish®/nanohydroxyapatite and one investigated glass ionomer cement for primary/secondary and tertiary caries prevention. The scoping review highlighted the scope for incorporating Arg to professionally deliverable F-containing agents. No clinical data are available to make conclusive recommendations about the caries preventive potential of professionally deliverable F-containing agents with incorporated Arg. With Arg-F varnish being investigated predominantly through in vitro studies, the data so far suggest that Arg was incorporated exclusively in Duraphat®, while the potential of Arg to prevent caries in other F-containing varnishes remains unexplored.