Using the reactive/transport dispersive models to simulate a monolithic anion exchanger: Experimental parameter determination, simultaneous model evaluation, and validation

IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS ELECTROPHORESIS Pub Date : 2024-06-08 DOI:10.1002/elps.202300133
Luis Gilberto Domínguez-López, Luis Alberto Mejía-Manzano, José González-Valdez
{"title":"Using the reactive/transport dispersive models to simulate a monolithic anion exchanger: Experimental parameter determination, simultaneous model evaluation, and validation","authors":"Luis Gilberto Domínguez-López,&nbsp;Luis Alberto Mejía-Manzano,&nbsp;José González-Valdez","doi":"10.1002/elps.202300133","DOIUrl":null,"url":null,"abstract":"<p>Selecting an adequate model to represent the mass transfer mechanisms occurring in a chromatographic process is generally complicated, which is one of the reasons why monolithic chromatography is scarcely simulated. In this study, the chromatographic separation of model proteins bovine serum albumin (BSA), β-lactoglobulin-A, and β-lactoglobulin-B on an anion exchange monolith was simulated based on experimental parameter determination, simultaneous model testing, and validation under three statistical criteria: retention time, dispersion accuracies, and Pearson correlation coefficient. Experimental characterization of morphologic, physicochemical, and kinetic parameters was performed through volume balances, pressure drop analysis, breakthrough curve analysis, and batch adsorptions. Free Gibbs energy indicated a spontaneous adsorption process for proteins and counterions. Dimensionless numbers were estimated based on height equivalent to a theoretical plate analysis, finding that pore diffusion controlled β-lactoglobulin separation, whereas adsorption/desorption kinetics was the dominant mechanism for BSA. The elution profiles were modeled using the transport dispersive model and the reactive dispersive model coupled with steric mass action (SMA) isotherms because these models allowed to consider most of the mass transport mechanisms that have been described. RDM-SMA presented the most accurate simulations at pH 6.0 and at low (250 mM) and high (400 mM) NaCl concentrations. This simulation will be used as reference to forecast the purification of these proteins from bovine whey waste and to extrapolate this methodology to other monolith-based separations using these three statistical criteria that have not been used previously for this purpose.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elps.202300133","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Selecting an adequate model to represent the mass transfer mechanisms occurring in a chromatographic process is generally complicated, which is one of the reasons why monolithic chromatography is scarcely simulated. In this study, the chromatographic separation of model proteins bovine serum albumin (BSA), β-lactoglobulin-A, and β-lactoglobulin-B on an anion exchange monolith was simulated based on experimental parameter determination, simultaneous model testing, and validation under three statistical criteria: retention time, dispersion accuracies, and Pearson correlation coefficient. Experimental characterization of morphologic, physicochemical, and kinetic parameters was performed through volume balances, pressure drop analysis, breakthrough curve analysis, and batch adsorptions. Free Gibbs energy indicated a spontaneous adsorption process for proteins and counterions. Dimensionless numbers were estimated based on height equivalent to a theoretical plate analysis, finding that pore diffusion controlled β-lactoglobulin separation, whereas adsorption/desorption kinetics was the dominant mechanism for BSA. The elution profiles were modeled using the transport dispersive model and the reactive dispersive model coupled with steric mass action (SMA) isotherms because these models allowed to consider most of the mass transport mechanisms that have been described. RDM-SMA presented the most accurate simulations at pH 6.0 and at low (250 mM) and high (400 mM) NaCl concentrations. This simulation will be used as reference to forecast the purification of these proteins from bovine whey waste and to extrapolate this methodology to other monolith-based separations using these three statistical criteria that have not been used previously for this purpose.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用反应/传输分散模型模拟整体阴离子交换器:实验参数确定、同步模型评估和验证。
选择适当的模型来表示色谱过程中发生的传质机制通常比较复杂,这也是很少模拟整体色谱的原因之一。本研究基于实验参数确定、同步模型测试以及保留时间、分散精度和皮尔逊相关系数三个统计标准的验证,模拟了模型蛋白质牛血清白蛋白(BSA)、β-乳球蛋白-A 和 β-乳球蛋白-B 在阴离子交换整体柱上的色谱分离过程。通过体积平衡、压降分析、突破曲线分析和批量吸附,对形态、物理化学和动力学参数进行了实验表征。自由吉布斯能显示了蛋白质和反离子的自发吸附过程。根据相当于理论平板分析的高度估算了无量纲数,发现孔隙扩散控制着 β-乳球蛋白的分离,而吸附/解吸动力学是 BSA 的主要机制。洗脱曲线的建模采用了迁移分散模型和反应分散模型与立体质量作用(SMA)等温线相结合的方法,因为这些模型可以考虑大多数已描述过的质量迁移机制。RDM-SMA 在 pH 值为 6.0、NaCl 浓度较低(250 毫摩尔)和较高(400 毫摩尔)时的模拟结果最为准确。这一模拟结果将作为参考,用于预测从牛乳清废料中纯化这些蛋白质的情况,并将这一方法推广到使用这三种统计标准的其他基于整体石分离的方法中,因为这三种统计标准以前从未用于此目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ELECTROPHORESIS
ELECTROPHORESIS 生物-分析化学
CiteScore
6.30
自引率
13.80%
发文量
244
审稿时长
1.9 months
期刊介绍: ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.). Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences. Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases. Papers describing the application of standard electrophoretic methods will not be considered. Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics: • Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry • Single cell and subcellular analysis • Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS) • Nanoscale/nanopore DNA sequencing (next generation sequencing) • Micro- and nanoscale sample preparation • Nanoparticles and cells analyses by dielectrophoresis • Separation-based analysis using nanoparticles, nanotubes and nanowires.
期刊最新文献
A Micro-Flow Liquid Chromatography-Mass Spectrometry Method for the Quantification of Oxylipins in Volume-Limited Human Plasma. Dynamics of Viscous Jeffrey Fluid Flow Through Darcian Medium With Hall Current and Quadratic Buoyancy. Enhanced Green Fluorescent Protein Streaming Dielectrophoresis in Insulator-Based Microfluidic Devices. Fatty Acid Analysis by Capillary Electrophoresis and Contactless Conductivity Detection for Future Life Detection Missions. A Comprehensive Review on Capillary Electrophoresis-Mass Spectrometry in Advancing Biomolecular Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1