A gradient electrospinning electrode structure both in the in/through-plane directions for non-aqueous iron-vanadium redox flow battery

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2024-06-06 DOI:10.1016/j.electacta.2024.144549
Wenxuan Fu , Qiang Ma , Zhenqian Chen , Huaneng Su , Huanhuan Li , Qian Xu
{"title":"A gradient electrospinning electrode structure both in the in/through-plane directions for non-aqueous iron-vanadium redox flow battery","authors":"Wenxuan Fu ,&nbsp;Qiang Ma ,&nbsp;Zhenqian Chen ,&nbsp;Huaneng Su ,&nbsp;Huanhuan Li ,&nbsp;Qian Xu","doi":"10.1016/j.electacta.2024.144549","DOIUrl":null,"url":null,"abstract":"<div><p>To boost the performance of non-aqueous redox flow batteries (RFBs), it is important to synergistically improve the flow/mass transfer efficiencies and the uniformity of overpotential distribution into the porous electrode. In this work, electrostatic spinning technology is developed to propose a novel porous electrode with gradient pore distribution both in the in-plane and through-plane directions, and applied in deep eutectic solvent (DES) electrolyte-based iron-vanadium RFB. On the one hand, the new in-plane gradient design modifies the distribution of reactive species of electrode near the membrane side, resulting in the decreasing polarization loss. On the other hand, the increasing porosity of electrodes from the flow field side to the membrane side attains a trade-off between the charge transfer and the electrolyte flow resistances. According to the experimental results, compared to the graphite felt electrode, the energy efficiency of this RFB with three-dimensional gradient electrode improves by 74.2 % at a current density of 10 mA·cm<sup>−2</sup>. Moreover, the numerical simulation reveals the reactive transfer behaviors of three-dimensional gradient porous electrode. The results show that the proposed three-dimensional gradient design can enhance the uniformity of overpotential distribution and achieve the decrease of polarization resistance, thus improving the performance of DES electrolyte-based iron-vanadium RFB effectively.</p></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624007898","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

To boost the performance of non-aqueous redox flow batteries (RFBs), it is important to synergistically improve the flow/mass transfer efficiencies and the uniformity of overpotential distribution into the porous electrode. In this work, electrostatic spinning technology is developed to propose a novel porous electrode with gradient pore distribution both in the in-plane and through-plane directions, and applied in deep eutectic solvent (DES) electrolyte-based iron-vanadium RFB. On the one hand, the new in-plane gradient design modifies the distribution of reactive species of electrode near the membrane side, resulting in the decreasing polarization loss. On the other hand, the increasing porosity of electrodes from the flow field side to the membrane side attains a trade-off between the charge transfer and the electrolyte flow resistances. According to the experimental results, compared to the graphite felt electrode, the energy efficiency of this RFB with three-dimensional gradient electrode improves by 74.2 % at a current density of 10 mA·cm−2. Moreover, the numerical simulation reveals the reactive transfer behaviors of three-dimensional gradient porous electrode. The results show that the proposed three-dimensional gradient design can enhance the uniformity of overpotential distribution and achieve the decrease of polarization resistance, thus improving the performance of DES electrolyte-based iron-vanadium RFB effectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于非水铁钒氧化还原液流电池的面内/面外梯度电纺丝电极结构
为了提高非水氧化还原液流电池(RFB)的性能,必须协同提高多孔电极的流动/质量转移效率和过电势分布的均匀性。本研究开发了静电纺丝技术,提出了一种新型多孔电极,该电极在面内和面外均具有梯度孔分布,并将其应用于基于深共晶溶剂(DES)电解质的铁钒电池。一方面,新的面内梯度设计改变了电极靠近膜侧的活性物种分布,从而降低了极化损耗。另一方面,电极的孔隙率从流场侧向膜侧增加,实现了电荷转移和电解质流动阻力之间的权衡。实验结果表明,与石墨毡电极相比,这种带有三维梯度电极的 RFB 在电流密度为 10 mA-cm-2 时的能量效率提高了 74.2%。此外,数值模拟揭示了三维梯度多孔电极的反应传递行为。结果表明,所提出的三维梯度设计可以提高过电位分布的均匀性,并实现极化电阻的降低,从而有效改善基于 DES 电解质的铁钒 RFB 的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Zn-Cu bimetallic gas diffusion electrodes for electrochemical reduction of CO2 to ethylene Electrodeposition of ReMo alloys Component regulation in flower-like FexCoNiP/C nanohybrids as bifunctional efficient electrocatalysts for overall water splitting Differential impedance analysis – Extensions and applications in machine learning Effect of Surfactants on 1,2-Dichloroethane-in-Water Droplet Impacts at Electrified Liquid-Liquid Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1