Agam Pamungkas , Fida N. Rahmani , Fariz Ikramullah , St Mardiana , Grandprix T.M. Kadja
{"title":"MXene-based nanocomposite for electrochemical hydrogen evolution reaction: Experimental and theoretical advances","authors":"Agam Pamungkas , Fida N. Rahmani , Fariz Ikramullah , St Mardiana , Grandprix T.M. Kadja","doi":"10.1016/j.flatc.2024.100692","DOIUrl":null,"url":null,"abstract":"<div><p>MXene’s outstanding performance in driving the Hydrogen Evolution Reaction (HER) has attracted significant interest. The HER involves hydrogen generation by electrolyzing water. It is widely recognized that hydrogen represents a renewable and future-oriented alternative energy source that is currently receiving significant attention. On the other hand, MXenes also have a crucial function as catalysts, elevating the pace and effectiveness of chemical reactions. Moreover, their properties make them essential in diverse fields, contributing to advancements in energy storage, sensing technology, and catalysis for improved reactions. Herein, we highlighted MXene nanocomposite materials from synthesized to utilization in HER reaction both experimentally and theoretically. Various MXene-based nanocomposites, which consist of monomer, carbon, and oxide that can be used in hydrogen evolution reactions, are also elaborated in detail. Ultimately, we concluded this review with the future prospect of MXenes in electrochemical HER.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"46 ","pages":"Article 100692"},"PeriodicalIF":5.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724000862","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
MXene’s outstanding performance in driving the Hydrogen Evolution Reaction (HER) has attracted significant interest. The HER involves hydrogen generation by electrolyzing water. It is widely recognized that hydrogen represents a renewable and future-oriented alternative energy source that is currently receiving significant attention. On the other hand, MXenes also have a crucial function as catalysts, elevating the pace and effectiveness of chemical reactions. Moreover, their properties make them essential in diverse fields, contributing to advancements in energy storage, sensing technology, and catalysis for improved reactions. Herein, we highlighted MXene nanocomposite materials from synthesized to utilization in HER reaction both experimentally and theoretically. Various MXene-based nanocomposites, which consist of monomer, carbon, and oxide that can be used in hydrogen evolution reactions, are also elaborated in detail. Ultimately, we concluded this review with the future prospect of MXenes in electrochemical HER.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)