Prediction of binding affinity and enthalpy of CB7 with alkaloids by attach-pull-release molecular dynamics simulations study

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of molecular graphics & modelling Pub Date : 2024-06-07 DOI:10.1016/j.jmgm.2024.108810
Xiru Wu, Lingzhi Wang, Yuan Qin, Yalei Gao, Min Yang, Pei Cao, Kai Liu
{"title":"Prediction of binding affinity and enthalpy of CB7 with alkaloids by attach-pull-release molecular dynamics simulations study","authors":"Xiru Wu,&nbsp;Lingzhi Wang,&nbsp;Yuan Qin,&nbsp;Yalei Gao,&nbsp;Min Yang,&nbsp;Pei Cao,&nbsp;Kai Liu","doi":"10.1016/j.jmgm.2024.108810","DOIUrl":null,"url":null,"abstract":"<div><p>Host-guest complex has attracted much attention because of their fantastic capability. Accurate prediction of their binding affinity and enthalpy is essential to the rational design of guest molecules. The attach-pull-release (APR) method proposed by Henriksen et al. (J. Chem. Theory Comput., 2015, 11:4377.) shows good prediction capability of binding affinity especially for host-guest system. In order to further evaluate the performance of APR method in practice, we have conducted the calculations on the macrocycle cucurbit [7]urils (CB7) encapsulated with four structurally similar alkaloids (berberine, coptisine, epiberberine and palmatine) with two force fields (GAFF and GAFF2) and three water models (TIP3P, SPC/E and OPC). Compared to the experimental data, the calculation by the combination of GAFF2 and SPC/E force field presents the best performance, of which the Pearson correlation coefficients (R<sup>2</sup>) is 0.95, and the root-mean-square-deviation is 3.04 kcal/mol. While the predictions from GAFF force field all overestimated the binding affinity, suggesting a systematic error may be involved. Comparison of calculation also indicates that the accuracy of prediction was susceptible to the combination of force field. Therefore, it would be necessary to repeat the simulation with different combination of force fields in practice.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"131 ","pages":"Article 108810"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324001104","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Host-guest complex has attracted much attention because of their fantastic capability. Accurate prediction of their binding affinity and enthalpy is essential to the rational design of guest molecules. The attach-pull-release (APR) method proposed by Henriksen et al. (J. Chem. Theory Comput., 2015, 11:4377.) shows good prediction capability of binding affinity especially for host-guest system. In order to further evaluate the performance of APR method in practice, we have conducted the calculations on the macrocycle cucurbit [7]urils (CB7) encapsulated with four structurally similar alkaloids (berberine, coptisine, epiberberine and palmatine) with two force fields (GAFF and GAFF2) and three water models (TIP3P, SPC/E and OPC). Compared to the experimental data, the calculation by the combination of GAFF2 and SPC/E force field presents the best performance, of which the Pearson correlation coefficients (R2) is 0.95, and the root-mean-square-deviation is 3.04 kcal/mol. While the predictions from GAFF force field all overestimated the binding affinity, suggesting a systematic error may be involved. Comparison of calculation also indicates that the accuracy of prediction was susceptible to the combination of force field. Therefore, it would be necessary to repeat the simulation with different combination of force fields in practice.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过附着-拉释分子动力学模拟研究预测 CB7 与生物碱的结合亲和力和结合焓
宿主-客体复合物因其神奇的能力而备受关注。准确预测它们的结合亲和力和结合焓对于合理设计客体分子至关重要。Henriksen 等(J. Chem. Theory Comput.为了进一步评估 APR 方法在实践中的性能,我们利用两个力场(GAFF 和 GAFF2)和三个水模型(TIP3P、SPC/E 和 OPC)对包裹了四种结构相似生物碱(小檗碱、黄连碱、表小檗碱和巴马汀)的大环葫芦[7]脲(CB7)进行了计算。与实验数据相比,GAFF2 和 SPC/E 力场组合的计算结果性能最佳,其皮尔逊相关系数(R2)为 0.95,均方根偏差为 3.04 kcal/mol。而 GAFF 力场的预测结果都高估了结合亲和力,这表明可能存在系统误差。计算结果的比较还表明,预测的准确性易受力场组合的影响。因此,有必要在实践中使用不同的力场组合重复模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of molecular graphics & modelling
Journal of molecular graphics & modelling 生物-计算机:跨学科应用
CiteScore
5.50
自引率
6.90%
发文量
216
审稿时长
35 days
期刊介绍: The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design. As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.
期刊最新文献
Dispersion-corrected DFT calculations and dynamic molecular simulations to investigate conformational stability of Lidocaine towards β-CD and HP-β-CD. Recent advancements in mechanical properties of graphene-enhanced polymer nanocomposites: Progress, challenges, and pathways forward. Estimating AChE inhibitors from MCE database by machine learning and atomistic calculations. Effects of carbon nanotube and alumina doping on the properties of para-aramids: A DFT and molecular dynamics study. Exploring the interaction between Fe3+ and REGLE motif of the high-affinity iron permease (Ftr1): An in silico approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1