Quynh Mai Thai, Trung Hai Nguyen, George Binh Lenon, Huong Thi Thu Phung, Jim-Tong Horng, Phuong-Thao Tran, Son Tung Ngo
{"title":"Estimating AChE inhibitors from MCE database by machine learning and atomistic calculations.","authors":"Quynh Mai Thai, Trung Hai Nguyen, George Binh Lenon, Huong Thi Thu Phung, Jim-Tong Horng, Phuong-Thao Tran, Son Tung Ngo","doi":"10.1016/j.jmgm.2024.108906","DOIUrl":null,"url":null,"abstract":"<p><p>Acetylcholinesterase (AChE) is one of the most successful targets for the treatment of Alzheimer's disease (AD). Inhibition of AChE can result in preventing AD. In this context, the machine-learning (ML) model, molecular docking, and molecular dynamics calculations were employed to characterize the potential inhibitors for AChE from MedChemExpress (MCE) database. The trained ML model was initially employed for estimating the inhibitory of MCE compounds. Atomistic simulations including molecular docking and molecular dynamics simulations were then used to confirm ML outcomes. In particular, the physical insights into the ligand binding to AChE were clarified over the calculations. Two compounds, PubChem ID of 130467298 and 132020434, were indicated that they can inhibit AChE.</p>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"134 ","pages":"108906"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmgm.2024.108906","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Acetylcholinesterase (AChE) is one of the most successful targets for the treatment of Alzheimer's disease (AD). Inhibition of AChE can result in preventing AD. In this context, the machine-learning (ML) model, molecular docking, and molecular dynamics calculations were employed to characterize the potential inhibitors for AChE from MedChemExpress (MCE) database. The trained ML model was initially employed for estimating the inhibitory of MCE compounds. Atomistic simulations including molecular docking and molecular dynamics simulations were then used to confirm ML outcomes. In particular, the physical insights into the ligand binding to AChE were clarified over the calculations. Two compounds, PubChem ID of 130467298 and 132020434, were indicated that they can inhibit AChE.
期刊介绍:
The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design.
As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.