Comprehensive analysis of insertion sequences within rRNA genes of CPR bacteria and biochemical characterization of a homing endonuclease encoded by these sequences.
{"title":"Comprehensive analysis of insertion sequences within rRNA genes of CPR bacteria and biochemical characterization of a homing endonuclease encoded by these sequences.","authors":"Megumi Tsurumaki, Asako Sato, Motofumi Saito, Akio Kanai","doi":"10.1128/jb.00074-24","DOIUrl":null,"url":null,"abstract":"<p><p>The Candidate Phyla Radiation (CPR) represents an extensive bacterial clade comprising primarily uncultured lineages and is distinguished from other bacteria by a significant prevalence of insertion sequences (ISs) within their rRNA genes. However, our understanding of the taxonomic distribution and characteristics of these ISs remains limited. In this study, we used a comprehensive approach to systematically determine the nature of the rRNA ISs in CPR bacteria. The analysis of hundreds of rRNA gene sequences across 65 CPR phyla revealed that ISs are present in 48% of 16S rRNA genes and 82% of 23S rRNA genes, indicating a broad distribution across the CPR clade, with exceptions in the 16S and 23S rRNA genes of <i>Candidatus</i> (<i>Ca</i>.) Saccharibacteria and the 16S rRNA genes of <i>Ca</i>. Peregrinibacteria. Over half the ISs display a group-I-intron-like structure, whereas specific 16S rRNA gene ISs display features reminiscent of group II introns. The ISs frequently encode proteins with homing endonuclease (HE) domains, centered around the LAGLIDADG motif. The LAGLIDADG HE (LHE) proteins encoded by the rRNA ISs of CPR bacteria predominantly have a single-domain structure, deviating from the usual single- or double-domain configuration observed in typical prokaryotic LHEs. Experimental analysis of one LHE protein, I-ShaI from <i>Ca</i>. Shapirobacteria, confirmed that its endonuclease activity targets the DNA sequence of its insertion site, and chemical cross-linking experiments demonstrated its capacity to form homodimers. These results provide robust evidence supporting the hypothesis that the explosive proliferation of rRNA ISs in CPR bacteria was facilitated by mechanisms involving LHEs.</p><p><strong>Importance: </strong>Insertion sequences (ISs) in rRNA genes are relatively limited and infrequent in most bacterial phyla. With a comprehensive bioinformatic analysis, we show that in CPR bacteria, these ISs occur in 48% of 16S rRNA genes and 82% of 23S rRNA genes. We also report the systematic and biochemical characterization of the LAGLIDADG homing endonucleases (LHEs) encoded by these ISs in the first such analysis of the CPR bacteria. This study significantly extends our understanding of the phylogenetic positions of rRNA ISs within CPR bacteria and the biochemical features of their LHEs.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0007424"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270868/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00074-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Candidate Phyla Radiation (CPR) represents an extensive bacterial clade comprising primarily uncultured lineages and is distinguished from other bacteria by a significant prevalence of insertion sequences (ISs) within their rRNA genes. However, our understanding of the taxonomic distribution and characteristics of these ISs remains limited. In this study, we used a comprehensive approach to systematically determine the nature of the rRNA ISs in CPR bacteria. The analysis of hundreds of rRNA gene sequences across 65 CPR phyla revealed that ISs are present in 48% of 16S rRNA genes and 82% of 23S rRNA genes, indicating a broad distribution across the CPR clade, with exceptions in the 16S and 23S rRNA genes of Candidatus (Ca.) Saccharibacteria and the 16S rRNA genes of Ca. Peregrinibacteria. Over half the ISs display a group-I-intron-like structure, whereas specific 16S rRNA gene ISs display features reminiscent of group II introns. The ISs frequently encode proteins with homing endonuclease (HE) domains, centered around the LAGLIDADG motif. The LAGLIDADG HE (LHE) proteins encoded by the rRNA ISs of CPR bacteria predominantly have a single-domain structure, deviating from the usual single- or double-domain configuration observed in typical prokaryotic LHEs. Experimental analysis of one LHE protein, I-ShaI from Ca. Shapirobacteria, confirmed that its endonuclease activity targets the DNA sequence of its insertion site, and chemical cross-linking experiments demonstrated its capacity to form homodimers. These results provide robust evidence supporting the hypothesis that the explosive proliferation of rRNA ISs in CPR bacteria was facilitated by mechanisms involving LHEs.
Importance: Insertion sequences (ISs) in rRNA genes are relatively limited and infrequent in most bacterial phyla. With a comprehensive bioinformatic analysis, we show that in CPR bacteria, these ISs occur in 48% of 16S rRNA genes and 82% of 23S rRNA genes. We also report the systematic and biochemical characterization of the LAGLIDADG homing endonucleases (LHEs) encoded by these ISs in the first such analysis of the CPR bacteria. This study significantly extends our understanding of the phylogenetic positions of rRNA ISs within CPR bacteria and the biochemical features of their LHEs.
期刊介绍:
The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.