Vibrio cholerae: a fundamental model system for bacterial genetics and pathogenesis research.

IF 2.7 3区 生物学 Q3 MICROBIOLOGY Journal of Bacteriology Pub Date : 2024-11-21 Epub Date: 2024-10-15 DOI:10.1128/jb.00248-24
Julia C van Kessel, Andrew Camilli
{"title":"<i>Vibrio cholerae</i>: a fundamental model system for bacterial genetics and pathogenesis research.","authors":"Julia C van Kessel, Andrew Camilli","doi":"10.1128/jb.00248-24","DOIUrl":null,"url":null,"abstract":"<p><p>Species of the <i>Vibrio</i> genus occupy diverse aquatic environments ranging from brackish water to warm equatorial seas to salty coastal regions. More than 80 species of <i>Vibrio</i> have been identified, many of them as pathogens of marine organisms, including fish, shellfish, and corals, causing disease and wreaking havoc on aquacultures and coral reefs. Moreover, many <i>Vibrio</i> species associate with and thrive on chitinous organisms abundant in the ocean. Among the many diverse <i>Vibrio</i> species, the most well-known and studied is <i>Vibrio cholerae</i>, discovered in the 19th century to cause cholera in humans when ingested. The <i>V. cholerae</i> field blossomed in the late 20th century, with studies broadly examining <i>V. cholerae</i> evolution as a human pathogen, natural competence, biofilm formation, and virulence mechanisms, including toxin biology and virulence gene regulation. This review discusses some of the historic discoveries of <i>V. cholerae</i> biology and ecology as one of the fundamental model systems of bacterial genetics and pathogenesis.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0024824"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580405/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00248-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Species of the Vibrio genus occupy diverse aquatic environments ranging from brackish water to warm equatorial seas to salty coastal regions. More than 80 species of Vibrio have been identified, many of them as pathogens of marine organisms, including fish, shellfish, and corals, causing disease and wreaking havoc on aquacultures and coral reefs. Moreover, many Vibrio species associate with and thrive on chitinous organisms abundant in the ocean. Among the many diverse Vibrio species, the most well-known and studied is Vibrio cholerae, discovered in the 19th century to cause cholera in humans when ingested. The V. cholerae field blossomed in the late 20th century, with studies broadly examining V. cholerae evolution as a human pathogen, natural competence, biofilm formation, and virulence mechanisms, including toxin biology and virulence gene regulation. This review discusses some of the historic discoveries of V. cholerae biology and ecology as one of the fundamental model systems of bacterial genetics and pathogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
霍乱弧菌:细菌遗传学和致病机理研究的基本模式系统。
弧菌属的物种占据着从咸水、温暖的赤道海域到盐度较高的沿海地区等各种水生环境。目前已发现 80 多种弧菌,其中许多是海洋生物(包括鱼类、贝类和珊瑚)的病原体,可导致疾病,并对水产养殖和珊瑚礁造成严重破坏。此外,许多弧菌会与海洋中大量的壳质生物结合,并在其上生长繁殖。在种类繁多的弧菌中,最著名和研究最多的是霍乱弧菌,19 世纪发现霍乱弧菌摄入人体后会引起霍乱。霍乱弧菌领域在 20 世纪末蓬勃发展,研究广泛涉及霍乱弧菌作为人类病原体的进化、自然能力、生物膜形成和毒力机制,包括毒素生物学和毒力基因调控。本综述讨论了霍乱弧菌生物学和生态学的一些历史性发现,霍乱弧菌是细菌遗传学和致病机理的基本模式系统之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
期刊最新文献
CodY controls the SaeR/S two-component system by modulating branched-chain fatty acid synthesis in Staphylococcus aureus. Impact of high-speed nanodroplets on various pathogenic bacterial cell walls. Vibrio cholerae: a fundamental model system for bacterial genetics and pathogenesis research. A flagellar accessory protein links chemotaxis to surface sensing. Combinatorial control of type IVa pili formation by the four polarized regulators MglA, SgmX, FrzS, and SopA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1