Trusting the forces of our cell lines

IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Cells and Development Pub Date : 2024-06-07 DOI:10.1016/j.cdev.2024.203931
{"title":"Trusting the forces of our cell lines","authors":"","doi":"10.1016/j.cdev.2024.203931","DOIUrl":null,"url":null,"abstract":"<div><p>Cells isolated from their native tissues and cultured <em>in vitro</em> face different selection pressures than those cultured <em>in vivo</em>. These pressures induce a profound transformation that reshapes the cell, alters its genome, and transforms the way it senses and generates forces. In this perspective, we focus on the evidence that cells cultured on conventional polystyrene substrates display a fundamentally different mechanobiology than their <em>in vivo</em> counterparts. We explore the role of adhesion reinforcement in this transformation and to what extent it is reversible. We argue that this mechanoadaptation is often understood as a mechanical memory. We propose some strategies to mitigate the effects of on-plastic culture on mechanobiology, such as organoid-inspired protocols or mechanical priming. While isolating cells from their native tissues and culturing them on artificial substrates has revolutionized biomedical research, it has also transformed cellular forces. Only by understanding and controlling them, we can improve their truthfulness and validity.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"179 ","pages":"Article 203931"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667290124000329/pdfft?md5=41d84aa12a8038508a4830be7313c50d&pid=1-s2.0-S2667290124000329-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells and Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667290124000329","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Cells isolated from their native tissues and cultured in vitro face different selection pressures than those cultured in vivo. These pressures induce a profound transformation that reshapes the cell, alters its genome, and transforms the way it senses and generates forces. In this perspective, we focus on the evidence that cells cultured on conventional polystyrene substrates display a fundamentally different mechanobiology than their in vivo counterparts. We explore the role of adhesion reinforcement in this transformation and to what extent it is reversible. We argue that this mechanoadaptation is often understood as a mechanical memory. We propose some strategies to mitigate the effects of on-plastic culture on mechanobiology, such as organoid-inspired protocols or mechanical priming. While isolating cells from their native tissues and culturing them on artificial substrates has revolutionized biomedical research, it has also transformed cellular forces. Only by understanding and controlling them, we can improve their truthfulness and validity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相信我们细胞系的力量
从原生组织中分离出来并在体外培养的细胞与在体内培养的细胞面临着不同的选择压力。这些压力会诱发深刻的转变,重塑细胞,改变其基因组,并改变其感知和产生力的方式。在这一视角中,我们将重点关注在传统聚苯乙烯基底上培养的细胞与体内培养的细胞表现出根本不同的机械生物学的证据。我们探讨了粘附强化在这种转变中的作用,以及这种作用在多大程度上是可逆的。我们认为,这种机械适应通常被理解为一种机械记忆。我们提出了一些策略来减轻塑性培养对机械生物学的影响,例如类器官启发方案或机械引物。将细胞从其原生组织中分离出来并在人工基质上进行培养的方法在彻底改变生物医学研究的同时,也改变了细胞的作用力。只有了解和控制它们,我们才能提高它们的真实性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cells and Development
Cells and Development Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
2.90
自引率
0.00%
发文量
33
审稿时长
41 days
期刊最新文献
LUC7L2 accelerates the growth of liver cancer cells by enhancing DNA damage repair via RRAS Blastoid: The future of human development in the laboratory Emerging therapeutic strategies for Wnt-dependent colon cancer targeting macropinocytosis The evolutionary and mechanical principles shaping the Drosophila embryonic ventral nerve cord Transcriptional regulation of postnatal aortic development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1