Seasonal Groundwater Level Dynamics in Unconfined Aquifers across the United States

IF 2 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Groundwater Pub Date : 2024-06-10 DOI:10.1111/gwat.13422
Mason O. Stahl, Tyler Mar, Yusuf Jameel
{"title":"Seasonal Groundwater Level Dynamics in Unconfined Aquifers across the United States","authors":"Mason O. Stahl,&nbsp;Tyler Mar,&nbsp;Yusuf Jameel","doi":"10.1111/gwat.13422","DOIUrl":null,"url":null,"abstract":"<p>Groundwater hydrographs contain a rich set of information on the dynamics of aquifer systems and the processes and properties that influence them. While the importance of seasonal cycles in hydrologic and environmental state variables is widely recognized there has yet to be a comprehensive analysis of the seasonal dynamics of groundwater across the United States. Here we use time series of groundwater level measurements from 997 wells from the National Groundwater Monitoring Network to identify and describe groundwater seasonal cycles in unconfined aquifers across the United States. We use functional data analysis to obtain a functional form fit for each site and apply an unsupervised clustering algorithm to identify a set of five distinct seasonal cycles regimes. Each seasonal cycle regime has a distinctive shape and distinct timing of its annual minimum and maximum water level. There are clear spatial patterns in the occurrence of each seasonal cycle regime, with the relative occurrence of each regime strongly influenced by the geologic setting (aquifer system), climate, and topography. Our findings provide a comprehensive characterization of groundwater seasonal cycles across much of the United States and present both a methodology and results useful for assessing and understanding unconfined groundwater systems.</p>","PeriodicalId":12866,"journal":{"name":"Groundwater","volume":"62 6","pages":"876-888"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gwat.13422","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Groundwater hydrographs contain a rich set of information on the dynamics of aquifer systems and the processes and properties that influence them. While the importance of seasonal cycles in hydrologic and environmental state variables is widely recognized there has yet to be a comprehensive analysis of the seasonal dynamics of groundwater across the United States. Here we use time series of groundwater level measurements from 997 wells from the National Groundwater Monitoring Network to identify and describe groundwater seasonal cycles in unconfined aquifers across the United States. We use functional data analysis to obtain a functional form fit for each site and apply an unsupervised clustering algorithm to identify a set of five distinct seasonal cycles regimes. Each seasonal cycle regime has a distinctive shape and distinct timing of its annual minimum and maximum water level. There are clear spatial patterns in the occurrence of each seasonal cycle regime, with the relative occurrence of each regime strongly influenced by the geologic setting (aquifer system), climate, and topography. Our findings provide a comprehensive characterization of groundwater seasonal cycles across much of the United States and present both a methodology and results useful for assessing and understanding unconfined groundwater systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全美非封闭含水层的季节性地下水位动态。
地下水水文图包含有关含水层系统动态以及影响含水层系统的过程和特性的丰富信息。虽然人们普遍认识到水文和环境状态变量中季节周期的重要性,但对全美地下水的季节动态还没有进行过全面的分析。在此,我们利用国家地下水监测网的 997 口水井的地下水位测量时间序列来识别和描述全美非承压含水层的地下水季节循环。我们使用函数数据分析来获得每个站点的函数形式拟合,并应用无监督聚类算法来识别一组五个不同的季节周期机制。每种季节循环机制都有独特的形状,其年度最低水位和最高水位的时间也各不相同。每种季节循环机制的出现都有明显的空间模式,每种机制的相对出现都受到地质环境(含水层系统)、气候和地形的强烈影响。我们的研究结果全面描述了美国大部分地区地下水季节循环的特点,并提出了一种方法和结果,有助于评估和了解非封闭地下水系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Groundwater
Groundwater 环境科学-地球科学综合
CiteScore
4.80
自引率
3.80%
发文量
0
审稿时长
12-24 weeks
期刊介绍: Ground Water is the leading international journal focused exclusively on ground water. Since 1963, Ground Water has published a dynamic mix of papers on topics related to ground water including ground water flow and well hydraulics, hydrogeochemistry and contaminant hydrogeology, application of geophysics, groundwater management and policy, and history of ground water hydrology. This is the journal you can count on to bring you the practical applications in ground water hydrology.
期刊最新文献
Issue Information Jupyter Notebooks for Parameter Estimation, Uncertainty Analysis, and Optimization with PEST++ Remembering the Big Picture Exploring Freshwater Beneath the Ocean Floor Society News
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1