Effect of A-site defects in Sc-doped CaTiO3 oxides on proton-oxide ion mixed conduction properties

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2024-06-10 DOI:10.1016/j.ssi.2024.116570
Shin-ichi Hashimoto , Hiroaki Kato , Mei Nakane , Tomoaki Namioka , Katsuhiro Nomura
{"title":"Effect of A-site defects in Sc-doped CaTiO3 oxides on proton-oxide ion mixed conduction properties","authors":"Shin-ichi Hashimoto ,&nbsp;Hiroaki Kato ,&nbsp;Mei Nakane ,&nbsp;Tomoaki Namioka ,&nbsp;Katsuhiro Nomura","doi":"10.1016/j.ssi.2024.116570","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, A-site defective Ca<sub><em>y</em></sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub> oxides were prepared to examine their ionic conduction properties. The electrical conductivities of two typical compositions were measured as functions of oxygen partial pressure <em>P</em><sub>O2</sub>, temperature, and humidity. Additionally, phase transition, chemical expansion, and CO<sub>2</sub> tolerance were examined in Ca<sub>0.985</sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub> using an atmosphere-controlled high-temperature X-ray diffraction. In Ca<sub>0.947</sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub>, the ionic conduction domain over a wide range of <em>P</em><sub>O2</sub> was observed at 500–800 °C, even though the humidity dependence of conductivities was confirmed only at 500 °C. Conversely, in Ca<sub>0.985</sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub>, the conductivities were enhanced in humidified atmospheres at 500–800 °C, while the ionic conductivities in dry atmospheres were higher than those of 8YSZ. As protonic and oxide ionic conductivities are comparable, the proton-oxide ion mixed conduction can be considered to occur in Ca<sub>0.985</sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub>. Therefore, a small percentage of Ca defect in Ca<sub><em>y</em></sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub> affects not only conductivity but also conductive ionic species. Furthermore, Ca<sub>0.985</sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub> did not show any phase transition and chemical expansion with hydration up to 900 °C. The crystal phase of Ca<sub>0.985</sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub> during the CO<sub>2</sub> tolerance test was observed to be stable. Therefore, the material properties of Ca<sub><em>y</em></sub>Ti<sub>0.93</sub>Sc<sub>0.07</sub>O<sub>3-α</sub> suggest its high potential as electrolytes in high temperature electrochemical devices.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"413 ","pages":"Article 116570"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824001188","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, A-site defective CayTi0.93Sc0.07O3-α oxides were prepared to examine their ionic conduction properties. The electrical conductivities of two typical compositions were measured as functions of oxygen partial pressure PO2, temperature, and humidity. Additionally, phase transition, chemical expansion, and CO2 tolerance were examined in Ca0.985Ti0.93Sc0.07O3-α using an atmosphere-controlled high-temperature X-ray diffraction. In Ca0.947Ti0.93Sc0.07O3-α, the ionic conduction domain over a wide range of PO2 was observed at 500–800 °C, even though the humidity dependence of conductivities was confirmed only at 500 °C. Conversely, in Ca0.985Ti0.93Sc0.07O3-α, the conductivities were enhanced in humidified atmospheres at 500–800 °C, while the ionic conductivities in dry atmospheres were higher than those of 8YSZ. As protonic and oxide ionic conductivities are comparable, the proton-oxide ion mixed conduction can be considered to occur in Ca0.985Ti0.93Sc0.07O3-α. Therefore, a small percentage of Ca defect in CayTi0.93Sc0.07O3-α affects not only conductivity but also conductive ionic species. Furthermore, Ca0.985Ti0.93Sc0.07O3-α did not show any phase transition and chemical expansion with hydration up to 900 °C. The crystal phase of Ca0.985Ti0.93Sc0.07O3-α during the CO2 tolerance test was observed to be stable. Therefore, the material properties of CayTi0.93Sc0.07O3-α suggest its high potential as electrolytes in high temperature electrochemical devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂 Sc 的 CaTiO3 氧化物中的 A 位缺陷对质子-氧化物离子混合传导特性的影响
本研究制备了有 A 位缺陷的 CayTi0.93Sc0.07O3-α 氧化物,以检验其离子传导特性。测量了两种典型成分的电导率与氧分压 PO2、温度和湿度的函数关系。此外,还使用大气控制高温 X 射线衍射法研究了 Ca0.985Ti0.93Sc0.07O3-α 的相变、化学膨胀和二氧化碳耐受性。在 Ca0.947Ti0.93Sc0.07O3-α中,尽管导电率的湿度依赖性仅在 500 ℃时得到证实,但在 500-800 ℃时,在很宽的 PO2 范围内都观察到了离子传导域。相反,对于 Ca0.985Ti0.93Sc0.07O3-α,在 500-800 °C的潮湿气氛中,其电导率有所提高,而在干燥气氛中的离子电导率则高于 8YSZ。由于质子和氧化物离子导电率相当,可以认为 Ca0.985Ti0.93Sc0.07O3-α 中发生了质子-氧化物离子混合传导。因此,CayTi0.93Sc0.07O3-α 中少量的 Ca 缺陷不仅会影响导电性,还会影响导电离子种类。此外,Ca0.985Ti0.93Sc0.07O3-α 在高达 900 °C 的水化过程中没有出现任何相变和化学膨胀。在二氧化碳耐受性测试中观察到,Ca0.985Ti0.93Sc0.07O3-α 的晶体相是稳定的。因此,CayTi0.93Sc0.07O3-α 的材料特性表明,它很有可能成为高温电化学设备中的电解质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
Editorial Board Enhancing ionic conductivity of LiSiPON thin films electrolytes: Overcoming synthesis challenges related to Li-migration in the precursor target Preface "Special Issue for the 21st International Conference on Solid State Protonic Conductors (SSPC-21)" Enhancing cycling stability in Li-rich layered oxides by atomic layer deposition of LiNbO3 nanolayers Performance improvement tactics of sensitized solar cells based on CuInS2 quantum dots prepared by high temperature hot injection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1