Raju Sapkota , Sadna Isik , Hery Suyanto , Ni Nyoman Rupiasih , Nahara Ingles , Conrad Rizal
{"title":"Sensor with combined plasmonic and magnetic activities","authors":"Raju Sapkota , Sadna Isik , Hery Suyanto , Ni Nyoman Rupiasih , Nahara Ingles , Conrad Rizal","doi":"10.1016/j.biosx.2024.100506","DOIUrl":null,"url":null,"abstract":"<div><p>Sensors utilizing magneto-optical surface plasmon resonance are gaining increasing scientific and practical attention to detect atmospheric gases and humidity. The magneto-optic surface plasmon resonance wavelength is defined by the plasmonic structure's geometry and structure, making it immune to electromagnetic interference outside its resonance frequency range. The present study investigates their application for the detection of atmospheric gases including humidity. In contrast to conventional sensors, magneto-optic sensors exhibited excellent performance in terms of sensitivity (10 times greater), higher quality factor (up to 76 times higher) and design simplicity in terms of layer thickness optimization, integration, and robustness. These results suggest significant potential for utilization of magneto-optic sensors across multiple industries.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100506"},"PeriodicalIF":10.6100,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000700/pdfft?md5=1b0217d1ce0a87eace49c2d3adee1cec&pid=1-s2.0-S2590137024000700-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Sensors utilizing magneto-optical surface plasmon resonance are gaining increasing scientific and practical attention to detect atmospheric gases and humidity. The magneto-optic surface plasmon resonance wavelength is defined by the plasmonic structure's geometry and structure, making it immune to electromagnetic interference outside its resonance frequency range. The present study investigates their application for the detection of atmospheric gases including humidity. In contrast to conventional sensors, magneto-optic sensors exhibited excellent performance in terms of sensitivity (10 times greater), higher quality factor (up to 76 times higher) and design simplicity in terms of layer thickness optimization, integration, and robustness. These results suggest significant potential for utilization of magneto-optic sensors across multiple industries.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.