首页 > 最新文献

Biosensors and Bioelectronics: X最新文献

英文 中文
Enhanced cardiovascular diagnostics using wearable ECG and bioimpedance monitoring with LightGBM classifier
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-03-26 DOI: 10.1016/j.biosx.2025.100617
Prince Jain , Ramji Gupta , Anand Joshi , Andrey Kuzmin
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, necessitating advanced diagnostic and monitoring tools. Traditional methods of cardiac monitoring face challenges such as limited availability, high costs, and continuous physician oversight. Recent advancements in mobile health (mHealth) technologies, including wearable devices and mobile applications, offer promising solutions for continuous and real-time monitoring of vital signs such as ECG, bioimpedance, and physical activity. This study focuses on integrating these monitoring modalities to enhance the accuracy and reliability of cardiovascular diagnostics. Specifically, we explore the use of the MAX30001 device for precise ECG and bioimpedance measurements in wearable applications. Machine learning techniques, particularly LightGBM, are employed to classify cardiac conditions based on the collected data. The LightGBM classifier achieved a test set accuracy of 94.49 %, with precision, recall, and F1-scores above 0.95 for all classes. The model's performance was further validated through cross-validation (CV), yielding a 5-fold CV accuracy of 95.86 % and a 10-fold CV accuracy of 96.16 %. The ROC curve analysis showed excellent discriminatory ability with AUC values close to 1. These findings highlight the potential applications of advanced mHealth solutions in providing continuous, accurate, and real-time monitoring of cardiovascular health, which can lead to better patient management and outcomes through timely and informed interventions.
{"title":"Enhanced cardiovascular diagnostics using wearable ECG and bioimpedance monitoring with LightGBM classifier","authors":"Prince Jain ,&nbsp;Ramji Gupta ,&nbsp;Anand Joshi ,&nbsp;Andrey Kuzmin","doi":"10.1016/j.biosx.2025.100617","DOIUrl":"10.1016/j.biosx.2025.100617","url":null,"abstract":"<div><div>Cardiovascular diseases (CVDs) are the leading cause of death worldwide, necessitating advanced diagnostic and monitoring tools. Traditional methods of cardiac monitoring face challenges such as limited availability, high costs, and continuous physician oversight. Recent advancements in mobile health (mHealth) technologies, including wearable devices and mobile applications, offer promising solutions for continuous and real-time monitoring of vital signs such as ECG, bioimpedance, and physical activity. This study focuses on integrating these monitoring modalities to enhance the accuracy and reliability of cardiovascular diagnostics. Specifically, we explore the use of the MAX30001 device for precise ECG and bioimpedance measurements in wearable applications. Machine learning techniques, particularly LightGBM, are employed to classify cardiac conditions based on the collected data. The LightGBM classifier achieved a test set accuracy of 94.49 %, with precision, recall, and F1-scores above 0.95 for all classes. The model's performance was further validated through cross-validation (CV), yielding a 5-fold CV accuracy of 95.86 % and a 10-fold CV accuracy of 96.16 %. The ROC curve analysis showed excellent discriminatory ability with AUC values close to 1. These findings highlight the potential applications of advanced mHealth solutions in providing continuous, accurate, and real-time monitoring of cardiovascular health, which can lead to better patient management and outcomes through timely and informed interventions.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100617"},"PeriodicalIF":10.61,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143724976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative Ag@Au nanozyme-enhanced organic photoelectrochemical transistor for ultrasensitive ochratoxin A detection
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-03-21 DOI: 10.1016/j.biosx.2025.100612
Shusheng Wei, Yuchen Shen, zhanpeng Zhang, Juan Wang
Organic bioelectronic devices are developing as adaptable platforms for advanced biosensing applications, such as wearable sensors, neural interfaces and tissue engineering, due to their remarkable flexibility, mobility, ease of manufacture, and biocompatibility. The article presents a unique organic photoelectrochemical transistor (OPECT) sensor, combined with an Ag@Au nanozyme-mediated catalytic precipitation mechanism, creating an ultrasensitive detection platform for Ochratoxin A (OTA). The ZnO/ZnFe2O4 heterostructure is established as a novel gating module. The ZnFe2O4 layer may boost electrolyte interaction and light accessibility to the ZnO nanoarray, thereby modulating the response of the polymeric poly (3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel, which can be monitored through the channel current. In conjunction with aptamer sensing, the Ag@Au nanozyme, exhibiting peroxidase-mimicking activity, catalyzes the oxidation of 4-chloro-1-naphthol (4-CN), leading to the formation of an insoluble precipitate on the gate electrode surface, which diminishes the photocurrent and modifies the transistor response. The OPECT sensor demonstrates outstanding analytical capabilities for OTA, featuring a wide dynamic range from 10−5 ng/mL to 10 ng/mL and a detection limit of 0.0206 pg/mL. The advancement of this OPECT sensor offers potential for employing organic photoelectrochemical transistors as a high-performance platform for OTA detection.
{"title":"Innovative Ag@Au nanozyme-enhanced organic photoelectrochemical transistor for ultrasensitive ochratoxin A detection","authors":"Shusheng Wei,&nbsp;Yuchen Shen,&nbsp;zhanpeng Zhang,&nbsp;Juan Wang","doi":"10.1016/j.biosx.2025.100612","DOIUrl":"10.1016/j.biosx.2025.100612","url":null,"abstract":"<div><div>Organic bioelectronic devices are developing as adaptable platforms for advanced biosensing applications, such as wearable sensors, neural interfaces and tissue engineering, due to their remarkable flexibility, mobility, ease of manufacture, and biocompatibility. The article presents a unique organic photoelectrochemical transistor (OPECT) sensor, combined with an Ag@Au nanozyme-mediated catalytic precipitation mechanism, creating an ultrasensitive detection platform for Ochratoxin A (OTA). The ZnO/ZnFe<sub>2</sub>O<sub>4</sub> heterostructure is established as a novel gating module. The ZnFe<sub>2</sub>O<sub>4</sub> layer may boost electrolyte interaction and light accessibility to the ZnO nanoarray, thereby modulating the response of the polymeric poly (3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel, which can be monitored through the channel current. In conjunction with aptamer sensing, the Ag@Au nanozyme, exhibiting peroxidase-mimicking activity, catalyzes the oxidation of 4-chloro-1-naphthol (4-CN), leading to the formation of an insoluble precipitate on the gate electrode surface, which diminishes the photocurrent and modifies the transistor response. The OPECT sensor demonstrates outstanding analytical capabilities for OTA, featuring a wide dynamic range from 10<sup>−5</sup> ng/mL to 10 ng/mL and a detection limit of 0.0206 pg/mL. The advancement of this OPECT sensor offers potential for employing organic photoelectrochemical transistors as a high-performance platform for OTA detection.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100612"},"PeriodicalIF":10.61,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143705359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-throughput and label-free screening of red blood cell stiffness: A study of sickle cell disease
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-03-20 DOI: 10.1016/j.biosx.2025.100616
Saurabh Kaushik , Arkabrata Mishra , Roshan Ross , Sweta Srivastava , Cecil R. Ross , Gautam V. Soni
Understanding the morphological and mechanical changes in cells are important for diagnostic and treatment methods in various diseases. In sickle cell disease (SCD), the mutated hemoglobin (HbS) aggregates inside the red blood cells (RBCs), making them rigid and, in extreme cases, sickle-shaped, resulting in anemia, episodes of pain, and multiple organ damage. Existing techniques are too costly and insensitive since the effect of the HbS gene (heterozygous and homozygous) is variable both in prevalence and clinical manifestations. In this work, we present a label-free, cost-effective, high-throughput electro-fluidic technique to study changes in the mechanical and morphological characteristics of RBCs. We validate our device by quantitatively comparing the mechanical properties of RBCs as a function of stiffness-altering drug (Latrunculin-A) with measurements using AFM. We demonstrate the on-site application of our system by screening SCD patients based on their RBC stiffness changes. The signatures of patient-specific heterogeneity in the RBC mechanical properties may help in monitoring clinical variability and identification of high-risk patients along with targeted therapies. The versatility of our measurements opens the whole cell stiffness as a preliminary screening biomarker in other haematological conditions, tumor cell identification, in veterinary sciences as well as in evaluating hydrogel technologies.
{"title":"High-throughput and label-free screening of red blood cell stiffness: A study of sickle cell disease","authors":"Saurabh Kaushik ,&nbsp;Arkabrata Mishra ,&nbsp;Roshan Ross ,&nbsp;Sweta Srivastava ,&nbsp;Cecil R. Ross ,&nbsp;Gautam V. Soni","doi":"10.1016/j.biosx.2025.100616","DOIUrl":"10.1016/j.biosx.2025.100616","url":null,"abstract":"<div><div>Understanding the morphological and mechanical changes in cells are important for diagnostic and treatment methods in various diseases. In sickle cell disease (SCD), the mutated hemoglobin (HbS) aggregates inside the red blood cells (RBCs), making them rigid and, in extreme cases, sickle-shaped, resulting in anemia, episodes of pain, and multiple organ damage. Existing techniques are too costly and insensitive since the effect of the HbS gene (heterozygous and homozygous) is variable both in prevalence and clinical manifestations. In this work, we present a label-free, cost-effective, high-throughput electro-fluidic technique to study changes in the mechanical and morphological characteristics of RBCs. We validate our device by quantitatively comparing the mechanical properties of RBCs as a function of stiffness-altering drug (Latrunculin-A) with measurements using AFM. We demonstrate the on-site application of our system by screening SCD patients based on their RBC stiffness changes. The signatures of patient-specific heterogeneity in the RBC mechanical properties may help in monitoring clinical variability and identification of high-risk patients along with targeted therapies. The versatility of our measurements opens the whole cell stiffness as a preliminary screening biomarker in other haematological conditions, tumor cell identification, in veterinary sciences as well as in evaluating hydrogel technologies.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100616"},"PeriodicalIF":10.61,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2D nanomaterials in biosensing: Synthesis, characterization, integration in biosensors and their applications
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-03-20 DOI: 10.1016/j.biosx.2025.100615
Desmond Lutomia , Renu Poria , Deepak Kala , Preeti Garg , Rupak Nagraik , Ankur Kaushal , Shagun Gupta , Deepak Kumar
Recent advances in the synthesis of functional nanomaterials and precisely engineered nanostructures have opened up new avenues for the fabrication of viable biosensors for field analysis. Two-dimensional (2D) nanomaterials provide unique hierarchical structures, high surface area, and layered configurations with multiple length scales and porosity, and the possibility to create functionalities for targeted recognition at their surface. In addition to providing extra features like structural color, ordered morphological features, and the capacity to detect and react to external stimuli, such hierarchical structures provide opportunities to tune the characteristics of materials. Combining these distinctive qualities of the various nanostructure types and using them as a foundation for bimolecular assemblies can yield biosensing platforms with enhanced robustness, sensitivity, and selectivity for the detection of a wide range of analytes, as well as targeted recognition and transduction properties that can have a positive impact on numerous fields. This review describes the classification, synthesis and characterization of 2D nanomaterials and their functionalization. In addition, the merits of the 2D nanomaterials and their applications in health, environmental monitoring and food safety and control are covered. The final part anticipates the advancement of 2D nanomaterials in biosensors, challenges and future directions of 2D nanomaterials in biosensors.
{"title":"2D nanomaterials in biosensing: Synthesis, characterization, integration in biosensors and their applications","authors":"Desmond Lutomia ,&nbsp;Renu Poria ,&nbsp;Deepak Kala ,&nbsp;Preeti Garg ,&nbsp;Rupak Nagraik ,&nbsp;Ankur Kaushal ,&nbsp;Shagun Gupta ,&nbsp;Deepak Kumar","doi":"10.1016/j.biosx.2025.100615","DOIUrl":"10.1016/j.biosx.2025.100615","url":null,"abstract":"<div><div>Recent advances in the synthesis of functional nanomaterials and precisely engineered nanostructures have opened up new avenues for the fabrication of viable biosensors for field analysis. Two-dimensional (2D) nanomaterials provide unique hierarchical structures, high surface area, and layered configurations with multiple length scales and porosity, and the possibility to create functionalities for targeted recognition at their surface. In addition to providing extra features like structural color, ordered morphological features, and the capacity to detect and react to external stimuli, such hierarchical structures provide opportunities to tune the characteristics of materials. Combining these distinctive qualities of the various nanostructure types and using them as a foundation for bimolecular assemblies can yield biosensing platforms with enhanced robustness, sensitivity, and selectivity for the detection of a wide range of analytes, as well as targeted recognition and transduction properties that can have a positive impact on numerous fields. This review describes the classification, synthesis and characterization of 2D nanomaterials and their functionalization. In addition, the merits of the 2D nanomaterials and their applications in health, environmental monitoring and food safety and control are covered. The final part anticipates the advancement of 2D nanomaterials in biosensors, challenges and future directions of 2D nanomaterials in biosensors.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100615"},"PeriodicalIF":10.61,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143715294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time monitoring of ssDNA binding using a fiber optic LSPR microfluidic platform
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-03-18 DOI: 10.1016/j.biosx.2025.100613
Vivek Semwal , Asbjørn Meldgaard Moltke , Ole Bang , Jakob Janting
In this paper, we present the development of a localized surface plasmon resonance (LSPR) sensor for the detection of single-stranded DNA (ssDNA). The LSPR chip was fabricated using gold nanoparticles (AuNPs) with a diameter of 80 nm. It was integrated with a microfluidic chamber to ensure stable measurements. We employed data processing techniques to fit the absorbance curve and extract the resonance wavelength, significantly reducing noise and achieving a 100-fold improvement in signal quality. The fabricated LSPR chips demonstrated a bulk refractive index sensitivity of approximately 85–90 nm/RIU. This paper outlines a robust methodology for reliable LSPR measurements based on cheap and readily accessible instruments. We have shown successfully real-time binding between Poly(T20) and Poly(A20), sensitive down to a concentration of 2 nM, while maintaining signal fluctuations 10 times lower than the shift in resonance wavelength without using any complex signal amplification technique. The sensor exhibits a limit of detection (LOD) of 0.75 nM. The proposed method shows potential for high-sensitivity and reliable real-time detection of smaller biomolecules, environmental pollutants, foodborne pathogens, toxins, and disease biomarkers.
{"title":"Real-time monitoring of ssDNA binding using a fiber optic LSPR microfluidic platform","authors":"Vivek Semwal ,&nbsp;Asbjørn Meldgaard Moltke ,&nbsp;Ole Bang ,&nbsp;Jakob Janting","doi":"10.1016/j.biosx.2025.100613","DOIUrl":"10.1016/j.biosx.2025.100613","url":null,"abstract":"<div><div>In this paper, we present the development of a localized surface plasmon resonance (LSPR) sensor for the detection of single-stranded DNA (ssDNA). The LSPR chip was fabricated using gold nanoparticles (AuNPs) with a diameter of 80 nm. It was integrated with a microfluidic chamber to ensure stable measurements. We employed data processing techniques to fit the absorbance curve and extract the resonance wavelength, significantly reducing noise and achieving a 100-fold improvement in signal quality. The fabricated LSPR chips demonstrated a bulk refractive index sensitivity of approximately 85–90 nm/RIU. This paper outlines a robust methodology for reliable LSPR measurements based on cheap and readily accessible instruments. We have shown successfully real-time binding between Poly(T<sub>20</sub>) and Poly(A<sub>20</sub>), sensitive down to a concentration of 2 nM, while maintaining signal fluctuations 10 times lower than the shift in resonance wavelength without using any complex signal amplification technique. The sensor exhibits a limit of detection (LOD) of 0.75 nM. The proposed method shows potential for high-sensitivity and reliable real-time detection of smaller biomolecules, environmental pollutants, foodborne pathogens, toxins, and disease biomarkers.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100613"},"PeriodicalIF":10.61,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143697207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hot or not: Quantifying isothiocyanates in plants, soil, and other media
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-03-15 DOI: 10.1016/j.biosx.2025.100599
Octavia Hogaboam , Viola A. Manning , Catherine L. Reardon , Kristin M. Trippe
Isothiocyanates (ITCs) are bioactive compounds produced by plants in the Brassicales that serve as natural defense mechanisms against pests and pathogens, and provide sharp, hot, and pungent flavors to plants like wasabi, mustards, and horseradish. In agricultural settings, natural and synthetic ITCs are used to biofumigate soils prior to planting; however, because residual ITCs can inhibit germination or plant growth, (i.e. soils are “hot”), caution is necessary when fields are replanted. Current methodologies that measure ITCs are labor intensive and require expensive instrumentation. Therefore, there is a critical need for rapid, reliable, and inexpensive methods that detect ITCs in a variety of plant and soil matrices. This study describes the development and validation of the SaxAPIL biosensor, which uses an ITC-responsive promoter to drive expression of a bioluminescent reporter in Pseudomonas fluorescens SBW25 to quantify ITCs. Our results indicate that SaxAPIL can be used in a high throughput microplate-based assay to detect ITCs in a dose-dependent manner in solutions, plant- and seed meal-derived extracts, and soils amended with green manure or seed meals. Our results clearly demonstrate that SaxAPIL is a robust biosensor for the detection and quantification of aliphatic ITCs in plants and soil. The methodology presented here may be adapted to provide more efficient and less expensive methods to measure ITCs in industrial, health, and life science applications.
{"title":"Hot or not: Quantifying isothiocyanates in plants, soil, and other media","authors":"Octavia Hogaboam ,&nbsp;Viola A. Manning ,&nbsp;Catherine L. Reardon ,&nbsp;Kristin M. Trippe","doi":"10.1016/j.biosx.2025.100599","DOIUrl":"10.1016/j.biosx.2025.100599","url":null,"abstract":"<div><div>Isothiocyanates (ITCs) are bioactive compounds produced by plants in the Brassicales that serve as natural defense mechanisms against pests and pathogens, and provide sharp, hot, and pungent flavors to plants like wasabi, mustards, and horseradish. In agricultural settings, natural and synthetic ITCs are used to biofumigate soils prior to planting; however, because residual ITCs can inhibit germination or plant growth, (i.e. soils are “hot”), caution is necessary when fields are replanted. Current methodologies that measure ITCs are labor intensive and require expensive instrumentation. Therefore, there is a critical need for rapid, reliable, and inexpensive methods that detect ITCs in a variety of plant and soil matrices. This study describes the development and validation of the SaxAPIL biosensor, which uses an ITC-responsive promoter to drive expression of a bioluminescent reporter in <em>Pseudomonas fluorescens</em> SBW25 to quantify ITCs. Our results indicate that SaxAPIL can be used in a high throughput microplate-based assay to detect ITCs in a dose-dependent manner in solutions, plant- and seed meal-derived extracts, and soils amended with green manure or seed meals. Our results clearly demonstrate that SaxAPIL is a robust biosensor for the detection and quantification of aliphatic ITCs in plants and soil. The methodology presented here may be adapted to provide more efficient and less expensive methods to measure ITCs in industrial, health, and life science applications.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100599"},"PeriodicalIF":10.61,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanosynthesis and thermal bio–sensing of beryllium–based molecularly imprinted polymers
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-03-14 DOI: 10.1016/j.biosx.2025.100605
Ana I. Furtado , Joseph W. Lowdon , Kasper Eersels , Bart van Grinsven , Adriana Cruz , Jacinta Serpa , Vasco D.B. Bonifácio , Raquel Viveiros , Teresa Casimiro
The adsorption of amino acids on electrode surfaces is pertinent to understanding the interfacial behaviours of biological molecules and addressing industrial challenges associated with their purification and monitoring in downstream processes. Molecularly imprinted polymers (MIPs) are ideal candidates for targeted molecular recognition. Metals offer significant potential for enhancing biological molecule recognition by enabling the creation of selective binding sites within polymeric matrices through molecular imprinting. The metal mediated coordination between the monomer and the biomolecule used as template greatly enhances both the affinity and selectivity of molecular recognition. Herein, beryllium–based natural monomers (curcumin and lawsone) were synthesized and applied as functional monomers in the synthesis of MIPs using the amino acid L–leucine (LEU) as template. Mechanochemistry (ball milling) was chosen as key methodology for the synthesis of both the beryllium–based monomers and MIP (BeMIPMs) fabrication. Subsequently, supercritical CO2 (scCO2) technology was used for efficiently desorb of the template, yielding vacant receptors. These two green technologies allowed the preparation of BeMIPMs as ready–to–use and stable dry polymeric powders. The prepared BeMIPM particles were then incorporated into a thermally conductive layer via micro–contact deposition. Their response towards LEU and analogues molecules was analysed using the heat–transfer method (HTM), and their performance was compared to the non–imprinted polymer (BeNIPMs) reference. The generated biosensor was found to have an optimal linear range of 0.30–0.93 mM and LoD of 0.16 mM (obtained by the 3σ method), while also being selective when comparing the thermal response to other analogues molecules (IFeffect-LEU = 1.6–1.8 vs. IFanalogues-molecule = 0.5–1.5). BeMIPM shows a promising performance for the monitoring of LEU in purification processes due to its thermal response, inclusive in real samples, offering a low–cost thermal platform for monitoring specific amino acids in complex industrial matrices.
{"title":"Mechanosynthesis and thermal bio–sensing of beryllium–based molecularly imprinted polymers","authors":"Ana I. Furtado ,&nbsp;Joseph W. Lowdon ,&nbsp;Kasper Eersels ,&nbsp;Bart van Grinsven ,&nbsp;Adriana Cruz ,&nbsp;Jacinta Serpa ,&nbsp;Vasco D.B. Bonifácio ,&nbsp;Raquel Viveiros ,&nbsp;Teresa Casimiro","doi":"10.1016/j.biosx.2025.100605","DOIUrl":"10.1016/j.biosx.2025.100605","url":null,"abstract":"<div><div>The adsorption of amino acids on electrode surfaces is pertinent to understanding the interfacial behaviours of biological molecules and addressing industrial challenges associated with their purification and monitoring in downstream processes. Molecularly imprinted polymers (MIPs) are ideal candidates for targeted molecular recognition. Metals offer significant potential for enhancing biological molecule recognition by enabling the creation of selective binding sites within polymeric matrices through molecular imprinting. The metal mediated coordination between the monomer and the biomolecule used as template greatly enhances both the affinity and selectivity of molecular recognition. Herein, beryllium–based natural monomers (curcumin and lawsone) were synthesized and applied as functional monomers in the synthesis of MIPs using the amino acid L–leucine (LEU) as template. Mechanochemistry (ball milling) was chosen as key methodology for the synthesis of both the beryllium–based monomers and MIP (BeMIPMs) fabrication. Subsequently, supercritical CO<sub>2</sub> (scCO<sub>2</sub>) technology was used for efficiently desorb of the template, yielding vacant receptors. These two green technologies allowed the preparation of BeMIPMs as ready–to–use and stable dry polymeric powders. The prepared BeMIPM particles were then incorporated into a thermally conductive layer via micro–contact deposition. Their response towards LEU and analogues molecules was analysed using the heat–transfer method (HTM), and their performance was compared to the non–imprinted polymer (BeNIPMs) reference. The generated biosensor was found to have an optimal linear range of 0.30–0.93 mM and LoD of 0.16 mM (obtained by the <em>3σ method</em>), while also being selective when comparing the thermal response to other analogues molecules (<em>IF</em><sub><em>effect-LEU</em></sub> = 1.6–1.8 <em>vs. IF</em><sub><em>analogues-molecule</em></sub> = 0.5–1.5). BeMIPM shows a promising performance for the monitoring of LEU in purification processes due to its thermal response, inclusive in real samples, offering a low–cost thermal platform for monitoring specific amino acids in complex industrial matrices.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100605"},"PeriodicalIF":10.61,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensitive and selective electrochemical biosensor based on Manganese(II) complex for simultaneous determination of adenine and guanine from clinical samples and DNA extract samples
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-03-14 DOI: 10.1016/j.biosx.2025.100603
Melaku Metto , Alemu Tesfaye , Minaleshewa Atlabachew , Abayneh Munshea , Atakilt Abebe
The purines guanine and adenine are essential building blocks for nucleic acids and influence numerous biochemical processes in organisms. Elevated levels of these compounds in the bloodstream can indicate conditions such as cancer and provide insights into cellular energy status, tissue degradation, and enzyme malfunctions in metabolic pathways.
This study focuses on developing a voltammetric sensor through the electropolymerization of a tetraresorcinatemanganate (II) complex on a glassy carbon electrode (poly(Mn(HR)4)/GCE), which was thoroughly characterized. The poly(Mn(HR)4)/GCE exhibited distinct, well-defined irreversible oxidative peaks for adenine and guanine. The peak currents displayed strong linearity with analyte concentrations within the 0.01–300 μM range, boasting a detection limit of 66.54 and 9.1 nm and a limit of quantifications of 221.80 and 30.23 nm, respectively. The sensor was successfully employed to detect adenine and guanine in urine, clinical blood serum, and DNA extract samples, with spike recovery rates in these samples reaching the range of 96–104 %. The interference recovery results showcased an error rate of less than 6 %, highlighting the method's superior lower detection limit and broader dynamic range compared to existing techniques. These findings underscore the potential practicality of the proposed approach for accurately determining adenine and guanine in diverse real samples with intricate matrices.
{"title":"Sensitive and selective electrochemical biosensor based on Manganese(II) complex for simultaneous determination of adenine and guanine from clinical samples and DNA extract samples","authors":"Melaku Metto ,&nbsp;Alemu Tesfaye ,&nbsp;Minaleshewa Atlabachew ,&nbsp;Abayneh Munshea ,&nbsp;Atakilt Abebe","doi":"10.1016/j.biosx.2025.100603","DOIUrl":"10.1016/j.biosx.2025.100603","url":null,"abstract":"<div><div>The purines guanine and adenine are essential building blocks for nucleic acids and influence numerous biochemical processes in organisms. Elevated levels of these compounds in the bloodstream can indicate conditions such as cancer and provide insights into cellular energy status, tissue degradation, and enzyme malfunctions in metabolic pathways.</div><div>This study focuses on developing a voltammetric sensor through the electropolymerization of a tetraresorcinatemanganate (II) complex on a glassy carbon electrode (poly(Mn(HR)<sub>4</sub>)/GCE), which was thoroughly characterized. The poly(Mn(HR)<sub>4</sub>)/GCE exhibited distinct, well-defined irreversible oxidative peaks for adenine and guanine. The peak currents displayed strong linearity with analyte concentrations within the 0.01–300 μM range, boasting a detection limit of 66.54 and 9.1 nm and a limit of quantifications of 221.80 and 30.23 nm, respectively. The sensor was successfully employed to detect adenine and guanine in urine, clinical blood serum, and DNA extract samples, with spike recovery rates in these samples reaching the range of 96–104 %. The interference recovery results showcased an error rate of less than 6 %, highlighting the method's superior lower detection limit and broader dynamic range compared to existing techniques. These findings underscore the potential practicality of the proposed approach for accurately determining adenine and guanine in diverse real samples with intricate matrices.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100603"},"PeriodicalIF":10.61,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging trends in Optofluidic biosensing: Techniques, applications, and future directions
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-03-13 DOI: 10.1016/j.biosx.2025.100602
Renu Poria , Sahil Kumar , Deepak Kala , Maciej Sakowicz , Hardeep Tuli , Krishna Kattel , Ankur Kaushal , Shagun Gupta , Deepak Kumar
This review explores the potential of optofluidic biosensing platforms, emphasizing their application in enhancing biosensing capabilities. This paper reports the various platforms, starting with surface plasmon resonance (SPR)-based optofluidic biosensors, covering angular and spectral SPR biosensing, local SPR biosensing, and the sensitivity and limit of detection (LOD) of both propagating and localized SPR, including multiplexing SPR biosensing techniques. This review further examines whispering gallery mode (WGM) microcavity-based biosensors and photonic crystal-based optofluidic biosensors. A comprehensive overview of the fabrication techniques for optofluidic biosensors is provided, detailing strategies such as direct manufacturing and mold replication. Key components such as fluid control, light manipulation, and signal transduction are highlighted. The material choices for optofluidics are discussed, emphasizing their role in biosensing applications. This paper concludes by exploring optofluidic sensing applications, categorized into absorption-based, plasmonic-based, and scattering-based biosensing techniques. Recent advancements and future directions in the field are discussed, highlighting the integration of these technologies into portable, multiplexed platforms for broader application and ease of use in various scientific and practical fields.
{"title":"Emerging trends in Optofluidic biosensing: Techniques, applications, and future directions","authors":"Renu Poria ,&nbsp;Sahil Kumar ,&nbsp;Deepak Kala ,&nbsp;Maciej Sakowicz ,&nbsp;Hardeep Tuli ,&nbsp;Krishna Kattel ,&nbsp;Ankur Kaushal ,&nbsp;Shagun Gupta ,&nbsp;Deepak Kumar","doi":"10.1016/j.biosx.2025.100602","DOIUrl":"10.1016/j.biosx.2025.100602","url":null,"abstract":"<div><div>This review explores the potential of optofluidic biosensing platforms, emphasizing their application in enhancing biosensing capabilities. This paper reports the various platforms, starting with surface plasmon resonance (SPR)-based optofluidic biosensors, covering angular and spectral SPR biosensing, local SPR biosensing, and the sensitivity and limit of detection (LOD) of both propagating and localized SPR, including multiplexing SPR biosensing techniques. This review further examines whispering gallery mode (WGM) microcavity-based biosensors and photonic crystal-based optofluidic biosensors. A comprehensive overview of the fabrication techniques for optofluidic biosensors is provided, detailing strategies such as direct manufacturing and mold replication. Key components such as fluid control, light manipulation, and signal transduction are highlighted. The material choices for optofluidics are discussed, emphasizing their role in biosensing applications. This paper concludes by exploring optofluidic sensing applications, categorized into absorption-based, plasmonic-based, and scattering-based biosensing techniques. Recent advancements and future directions in the field are discussed, highlighting the integration of these technologies into portable, multiplexed platforms for broader application and ease of use in various scientific and practical fields.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100602"},"PeriodicalIF":10.61,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143685064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A high performance laser induced graphene (LIG) dual biosensor for simultaneous monitoring of glucose and lactate
IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2025-03-12 DOI: 10.1016/j.biosx.2025.100600
Hassan Hamidi , Richard Murray , Vincenzo Vezzoni , Somayyeh Bozorgzadeh , Alan O'Riordan , Daniele Pontiroli , Mauro Riccò , Aidan J. Quinn , Daniela Iacopino
The growing demand for efficient and reliable biosensors has driven significant advancements in the development of innovative platforms for real-time monitoring of key biomarkers. In this work, we developed a novel dual biosensing platform designed for simultaneous detection of glucose and lactate, leveraging a laser scribing technology. Individual glucose and lactate biosensors were firstly fabricated, using three electrode designs and Laser Induced Graphene (LIG) as transduction electrode. The individual biosensors displayed high linear range in the relevant sweat physiological range, good sensitivity (41.1 and 12.4 μA mM−1 cm−2 for glucose and lactate, respectively), Limit of Detection (LOD, 14.9 μM and 2.4 mM for glucose and lactate) and superior short- and long-term stability. Following optimization and in-depth characterization of the individual platforms, a dual sensing platform was designed to offer robust and reliable simultaneous detection of glucose and lactate in a single, integrated system. The dual biosensor maintained the performance displayed in single format, exhibiting sensitivities of 41.2 μA cm−2 mM−1 and 12.0 μA cm−2 mM−1 for glucose and lactate, respectively. The dual platform was successfully tested in artificial sweat, demonstrating its potential for precise and reliable biomarker monitoring in continuous health monitoring systems and point-of-care diagnostic.
{"title":"A high performance laser induced graphene (LIG) dual biosensor for simultaneous monitoring of glucose and lactate","authors":"Hassan Hamidi ,&nbsp;Richard Murray ,&nbsp;Vincenzo Vezzoni ,&nbsp;Somayyeh Bozorgzadeh ,&nbsp;Alan O'Riordan ,&nbsp;Daniele Pontiroli ,&nbsp;Mauro Riccò ,&nbsp;Aidan J. Quinn ,&nbsp;Daniela Iacopino","doi":"10.1016/j.biosx.2025.100600","DOIUrl":"10.1016/j.biosx.2025.100600","url":null,"abstract":"<div><div>The growing demand for efficient and reliable biosensors has driven significant advancements in the development of innovative platforms for real-time monitoring of key biomarkers. In this work, we developed a novel dual biosensing platform designed for simultaneous detection of glucose and lactate, leveraging a laser scribing technology. Individual glucose and lactate biosensors were firstly fabricated, using three electrode designs and Laser Induced Graphene (LIG) as transduction electrode. The individual biosensors displayed high linear range in the relevant sweat physiological range, good sensitivity (41.1 and 12.4 μA mM<sup>−1</sup> cm<sup>−2</sup> for glucose and lactate, respectively), Limit of Detection (LOD, 14.9 μM and 2.4 mM for glucose and lactate) and superior short- and long-term stability. Following optimization and in-depth characterization of the individual platforms, a dual sensing platform was designed to offer robust and reliable simultaneous detection of glucose and lactate in a single, integrated system. The dual biosensor maintained the performance displayed in single format, exhibiting sensitivities of 41.2 μA cm<sup>−2</sup> mM<sup>−1</sup> and 12.0 μA cm<sup>−2</sup> mM<sup>−1</sup> for glucose and lactate, respectively. The dual platform was successfully tested in artificial sweat, demonstrating its potential for precise and reliable biomarker monitoring in continuous health monitoring systems and point-of-care diagnostic.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100600"},"PeriodicalIF":10.61,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143627966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biosensors and Bioelectronics: X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1