{"title":"Object detection for caries or pit and fissure sealing requirement in children's first permanent molars","authors":"Chenyao Jiang, Shiyao Zhai, Hengrui Song, Yuqing Ma, Yachen Fan, Yancheng Fang, Dongmei Yu, Canyang Zhang, Sanyang Han, Runming Wang, Yong Liu, Zhenglin Chen, Jianbo Li, Peiwu Qin","doi":"10.1111/coin.12653","DOIUrl":null,"url":null,"abstract":"<p>Dental caries, a common oral disease, poses serious risks if untreated, necessitating effective preventive measures like pit and fissure sealing. However, the reliance on experienced dentists for pit and fissures or caries detection limits accessibility, potentially leading to missed treatment opportunities, especially among children. To bridge this gap, we leverage deep learning in object detection to develop a method for autonomously identifying caries and determining pit and fissure sealing requirements using smartphone oral photos. We test several detection models and adopt a tiling strategy to reduce information loss during image pre-processing. Our implementation achieves 72.3 mAP.5 with the YOLOXs model and tiling strategy. We enhance accessibility by deploying the pre-trained network as a WeChat applet on mobile devices, enabling in-home detection by parents or guardians. In addition, our data set of children's first permanent molars will also aid in the broader study of pediatric oral disease.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12653","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Dental caries, a common oral disease, poses serious risks if untreated, necessitating effective preventive measures like pit and fissure sealing. However, the reliance on experienced dentists for pit and fissures or caries detection limits accessibility, potentially leading to missed treatment opportunities, especially among children. To bridge this gap, we leverage deep learning in object detection to develop a method for autonomously identifying caries and determining pit and fissure sealing requirements using smartphone oral photos. We test several detection models and adopt a tiling strategy to reduce information loss during image pre-processing. Our implementation achieves 72.3 mAP.5 with the YOLOXs model and tiling strategy. We enhance accessibility by deploying the pre-trained network as a WeChat applet on mobile devices, enabling in-home detection by parents or guardians. In addition, our data set of children's first permanent molars will also aid in the broader study of pediatric oral disease.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.