Yang Liu, Zheru Qiu, Xinru Ji, Andrea Bancora, Grigory Lihachev, Johann Riemensberger, Rui Ning Wang, Andrey Voloshin, Tobias J. Kippenberg
{"title":"A fully hybrid integrated erbium-based laser","authors":"Yang Liu, Zheru Qiu, Xinru Ji, Andrea Bancora, Grigory Lihachev, Johann Riemensberger, Rui Ning Wang, Andrey Voloshin, Tobias J. Kippenberg","doi":"10.1038/s41566-024-01454-7","DOIUrl":null,"url":null,"abstract":"Erbium-doped fibre lasers exhibit high coherence and low noise as required for fibre-optic sensing, gyroscopes, LiDAR and optical frequency metrology. Endowing erbium-based gain in photonic integrated circuits can provide a basis for miniaturizing low-noise fibre lasers to the chip-scale form factor and enable large-volume applications. Although major progress has been made on integrated lasers based on silicon photonics with III–V gain media, realizing low-noise integrated erbium-based lasers has, however, remained unachievable. Recent advances in photonic-integrated-circuit-based high-power erbium-doped amplifiers make a new class of rare-earth-ion-based lasers possible. Here we demonstrate a fully integrated erbium laser that achieves 50 Hz intrinsic linewidth, high output power up to 17 mW, low intensity noise and integration of a III–V pump laser, approaching the performance of fibre lasers and state-of-the-art semiconductor extended-cavity lasers. The laser circuit is based on an erbium-ion-implanted ultralow-loss silicon nitride photonic integrated circuit, with an intracavity microring-based Vernier filter that enables >40 nm wavelength tunability within the optical C and L bands and attains a 70 dB side-mode suppression ratio. This new class of low-noise, tunable integrated laser could find applications in LiDAR, microwave photonics, optical frequency synthesis and free-space communications, with wavelength extendibility using different rare-earth ion species. A fully hybrid integrated erbium-doped photonic integrated waveguide laser with wide tuning of 40 nm, side-mode suppression ratio of >70 dB and output power up to 17 mW is demonstrated, achieving not only footprint reduction but also the long-anticipated fibre-laser coherence.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 8","pages":"829-835"},"PeriodicalIF":32.3000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01454-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Erbium-doped fibre lasers exhibit high coherence and low noise as required for fibre-optic sensing, gyroscopes, LiDAR and optical frequency metrology. Endowing erbium-based gain in photonic integrated circuits can provide a basis for miniaturizing low-noise fibre lasers to the chip-scale form factor and enable large-volume applications. Although major progress has been made on integrated lasers based on silicon photonics with III–V gain media, realizing low-noise integrated erbium-based lasers has, however, remained unachievable. Recent advances in photonic-integrated-circuit-based high-power erbium-doped amplifiers make a new class of rare-earth-ion-based lasers possible. Here we demonstrate a fully integrated erbium laser that achieves 50 Hz intrinsic linewidth, high output power up to 17 mW, low intensity noise and integration of a III–V pump laser, approaching the performance of fibre lasers and state-of-the-art semiconductor extended-cavity lasers. The laser circuit is based on an erbium-ion-implanted ultralow-loss silicon nitride photonic integrated circuit, with an intracavity microring-based Vernier filter that enables >40 nm wavelength tunability within the optical C and L bands and attains a 70 dB side-mode suppression ratio. This new class of low-noise, tunable integrated laser could find applications in LiDAR, microwave photonics, optical frequency synthesis and free-space communications, with wavelength extendibility using different rare-earth ion species. A fully hybrid integrated erbium-doped photonic integrated waveguide laser with wide tuning of 40 nm, side-mode suppression ratio of >70 dB and output power up to 17 mW is demonstrated, achieving not only footprint reduction but also the long-anticipated fibre-laser coherence.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.