Nanoassemblies designed for efficient nuclear targeting

IF 15.2 1区 医学 Q1 PHARMACOLOGY & PHARMACY Advanced drug delivery reviews Pub Date : 2024-06-09 DOI:10.1016/j.addr.2024.115354
Michal Skowicki , Shabnam Tarvirdipour , Manuel Kraus , Cora-Ann Schoenenberger , Cornelia G. Palivan
{"title":"Nanoassemblies designed for efficient nuclear targeting","authors":"Michal Skowicki ,&nbsp;Shabnam Tarvirdipour ,&nbsp;Manuel Kraus ,&nbsp;Cora-Ann Schoenenberger ,&nbsp;Cornelia G. Palivan","doi":"10.1016/j.addr.2024.115354","DOIUrl":null,"url":null,"abstract":"<div><p>One of the key aspects of coping efficiently with complex pathological conditions is delivering the desired therapeutic compounds with precision in both space and time. Therefore, the focus on nuclear-targeted delivery systems has emerged as a promising strategy with high potential, particularly in gene therapy and cancer treatment. Here, we explore the design of supramolecular nanoassemblies as vehicles to deliver specific compounds to the nucleus, with the special focus on polymer and peptide-based carriers that expose nuclear localization signals. Such nanoassemblies aim at maximizing the concentration of genetic and therapeutic agents within the nucleus, thereby optimizing treatment outcomes while minimizing off-target effects. A complex scenario of conditions, including cellular uptake, endosomal escape, and nuclear translocation, requires fine tuning of the nanocarriers’ properties. First, we introduce the principles of nuclear import and the role of nuclear pore complexes that reveal strategies for targeting nanosystems to the nucleus. Then, we provide an overview of cargoes that rely on nuclear localization for optimal activity as their integrity and accumulation are crucial parameters to consider when designing a suitable delivery system. Considering that they are in their early stages of research, we present various cargo-loaded peptide- and polymer nanoassemblies that promote nuclear targeting, emphasizing their potential to enhance therapeutic response. Finally, we briefly discuss further advancements for more precise and effective nuclear delivery.</p></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"211 ","pages":"Article 115354"},"PeriodicalIF":15.2000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169409X24001765/pdfft?md5=4da3d0e8d1d1c8fb9b5da3be9f7743bb&pid=1-s2.0-S0169409X24001765-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced drug delivery reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169409X24001765","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

One of the key aspects of coping efficiently with complex pathological conditions is delivering the desired therapeutic compounds with precision in both space and time. Therefore, the focus on nuclear-targeted delivery systems has emerged as a promising strategy with high potential, particularly in gene therapy and cancer treatment. Here, we explore the design of supramolecular nanoassemblies as vehicles to deliver specific compounds to the nucleus, with the special focus on polymer and peptide-based carriers that expose nuclear localization signals. Such nanoassemblies aim at maximizing the concentration of genetic and therapeutic agents within the nucleus, thereby optimizing treatment outcomes while minimizing off-target effects. A complex scenario of conditions, including cellular uptake, endosomal escape, and nuclear translocation, requires fine tuning of the nanocarriers’ properties. First, we introduce the principles of nuclear import and the role of nuclear pore complexes that reveal strategies for targeting nanosystems to the nucleus. Then, we provide an overview of cargoes that rely on nuclear localization for optimal activity as their integrity and accumulation are crucial parameters to consider when designing a suitable delivery system. Considering that they are in their early stages of research, we present various cargo-loaded peptide- and polymer nanoassemblies that promote nuclear targeting, emphasizing their potential to enhance therapeutic response. Finally, we briefly discuss further advancements for more precise and effective nuclear delivery.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计用于高效核打靶的纳米组件。
要有效地应对复杂的病理条件,其中一个关键方面就是要在空间和时间上精确地输送所需的治疗化合物。因此,核靶向递送系统已成为一种极具潜力的战略,尤其是在基因治疗和癌症治疗方面。在这里,我们探讨了如何设计超分子纳米组装体,将其作为向细胞核输送特定化合物的载体,并特别关注能暴露核定位信号的聚合物和肽类载体。这种纳米组合旨在最大限度地提高细胞核内遗传和治疗药物的浓度,从而优化治疗效果,同时最大限度地减少脱靶效应。包括细胞摄取、内体逸出和核转运在内的各种复杂条件要求对纳米载体的特性进行微调。首先,我们介绍了核导入的原理和核孔复合体的作用,揭示了将纳米系统靶向到细胞核的策略。然后,我们概述了依赖核定位以获得最佳活性的货物,因为它们的完整性和积累是设计合适的递送系统时需要考虑的关键参数。考虑到它们尚处于早期研究阶段,我们介绍了各种促进核靶向的载货肽和聚合物纳米组合,强调了它们增强治疗反应的潜力。最后,我们简要讨论了更精确、更有效的核输送的进一步进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
28.10
自引率
5.00%
发文量
294
审稿时长
15.1 weeks
期刊介绍: The aim of the Journal is to provide a forum for the critical analysis of advanced drug and gene delivery systems and their applications in human and veterinary medicine. The Journal has a broad scope, covering the key issues for effective drug and gene delivery, from administration to site-specific delivery. In general, the Journal publishes review articles in a Theme Issue format. Each Theme Issue provides a comprehensive and critical examination of current and emerging research on the design and development of advanced drug and gene delivery systems and their application to experimental and clinical therapeutics. The goal is to illustrate the pivotal role of a multidisciplinary approach to modern drug delivery, encompassing the application of sound biological and physicochemical principles to the engineering of drug delivery systems to meet the therapeutic need at hand. Importantly the Editorial Team of ADDR asks that the authors effectively window the extensive volume of literature, pick the important contributions and explain their importance, produce a forward looking identification of the challenges facing the field and produce a Conclusions section with expert recommendations to address the issues.
期刊最新文献
Editorial: Super-resolution imaging of sub-cellular dynamics of drug molecules. Drug delivery systems for treating neurodevelopmental disorders. Application of pharmacometrics in drug development 3D printing of pharmaceutical dosage forms: Recent advances and applications 3D extrusion bioprinting of microbial inks for biomedical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1