Daniel Rankins, Kwasi M Connor, Emily E Bryant, Jonathan Lopez, Diana L Nieves, Matthew Moran, Beck A Wehrle
{"title":"Digestive Enzyme Activities in Mussel Mytilus californianus Endure Acute Heat Exposure in Air.","authors":"Daniel Rankins, Kwasi M Connor, Emily E Bryant, Jonathan Lopez, Diana L Nieves, Matthew Moran, Beck A Wehrle","doi":"10.1093/icb/icae068","DOIUrl":null,"url":null,"abstract":"<p><p>The mussel Mytilus californianus is an ecosystem engineer forming beds along the coastlines of Northeastern Pacific shores. As sessile organisms, they modulate their energy balance through valve movements, feeding, and digestive functionality. A recent study observed that activity of the digestive enzyme cellulase was higher than predicted in mussels high on the shore, where temperatures are characteristically high and food availability is limited compared to low-shore habitats. In the current study, we predicted that this scavenging behavior is induced to mitigate energy losses related to heat-shock responses-that cellulase and amylase will display hyperactivity for limited recourses in the face of aerial heating. In the laboratory, we acclimated mussels to three complex diets that differed in starch and cellulose composition, followed by two acute heat shocks (+8°C) in the laboratory. Results showed no hyperactivity of amylase and cellulase in heated mussels. These results differ from previous studies that showed lowered amylase activity following heat acclimation. This difference in amylase activity across heat-stress exposure time is important when analyzing mussel bed disturbances following heat waves that compromise energy balance or cause death within adult populations.</p>","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae068","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The mussel Mytilus californianus is an ecosystem engineer forming beds along the coastlines of Northeastern Pacific shores. As sessile organisms, they modulate their energy balance through valve movements, feeding, and digestive functionality. A recent study observed that activity of the digestive enzyme cellulase was higher than predicted in mussels high on the shore, where temperatures are characteristically high and food availability is limited compared to low-shore habitats. In the current study, we predicted that this scavenging behavior is induced to mitigate energy losses related to heat-shock responses-that cellulase and amylase will display hyperactivity for limited recourses in the face of aerial heating. In the laboratory, we acclimated mussels to three complex diets that differed in starch and cellulose composition, followed by two acute heat shocks (+8°C) in the laboratory. Results showed no hyperactivity of amylase and cellulase in heated mussels. These results differ from previous studies that showed lowered amylase activity following heat acclimation. This difference in amylase activity across heat-stress exposure time is important when analyzing mussel bed disturbances following heat waves that compromise energy balance or cause death within adult populations.
期刊介绍:
Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.