{"title":"Remarkably high tensile strength and lattice thermal conductivity in wide band gap oxidized holey graphene C<sub>2</sub>O nanosheet.","authors":"Fazel Shojaei, Qinghua Zhang, Xiaoying Zhuang, Bohayra Mortazavi","doi":"10.1186/s11671-024-04046-0","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, the synthesis of oxidized holey graphene with the chemical formula C<sub>2</sub>O has been reported (J. Am. Chem. Soc. 2024, 146, 4532). We herein employed a combination of density functional theory (DFT) and machine learning interatomic potential (MLIP) calculations to investigate the electronic, optical, mechanical and thermal properties of the C<sub>2</sub>O monolayer, and compared our findings with those of its C<sub>2</sub>N counterpart. Our analysis shows that while the C<sub>2</sub>N monolayer exhibits delocalized π-conjugation and shows a 2.47 eV direct-gap semiconducting behavior, the C<sub>2</sub>O counterpart exhibits an indirect gap of 3.47 eV. We found that while the C<sub>2</sub>N monolayer exhibits strong absorption in the visible spectrum, the initial absorption peaks in the C<sub>2</sub>O lattice occur at around 5 eV, falling within the UV spectrum. Notably, we found that the C<sub>2</sub>O nanosheet presents significantly higher tensile strength compared to its C<sub>2</sub>N counterpart. MLIP-based calculations show that at room temperature, the C<sub>2</sub>O nanosheet can exhibit remarkably high tensile strength and lattice thermal conductivity of 42 GPa and 129 W/mK, respectively. The combined insights from DFT and MLIP-based results provide a comprehensive understanding of the electronic and optical properties of C<sub>2</sub>O nanosheets, suggesting them as mechanically robust and highly thermally conductive wide bandgap semiconductors.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"99"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166619/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-024-04046-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the synthesis of oxidized holey graphene with the chemical formula C2O has been reported (J. Am. Chem. Soc. 2024, 146, 4532). We herein employed a combination of density functional theory (DFT) and machine learning interatomic potential (MLIP) calculations to investigate the electronic, optical, mechanical and thermal properties of the C2O monolayer, and compared our findings with those of its C2N counterpart. Our analysis shows that while the C2N monolayer exhibits delocalized π-conjugation and shows a 2.47 eV direct-gap semiconducting behavior, the C2O counterpart exhibits an indirect gap of 3.47 eV. We found that while the C2N monolayer exhibits strong absorption in the visible spectrum, the initial absorption peaks in the C2O lattice occur at around 5 eV, falling within the UV spectrum. Notably, we found that the C2O nanosheet presents significantly higher tensile strength compared to its C2N counterpart. MLIP-based calculations show that at room temperature, the C2O nanosheet can exhibit remarkably high tensile strength and lattice thermal conductivity of 42 GPa and 129 W/mK, respectively. The combined insights from DFT and MLIP-based results provide a comprehensive understanding of the electronic and optical properties of C2O nanosheets, suggesting them as mechanically robust and highly thermally conductive wide bandgap semiconductors.