{"title":"Assessing the matrix effects on MALDI-MS in the positive and negative ion mode detection for protein-protected metal nanoclusters","authors":"Hao Yuan , Djibril Lima , Clothilde Comby-Zerbino , Charlène Bouanchaud , Fabien Chirot , Dipankar Bain , Sanjun Zhang , Rodolphe Antoine","doi":"10.1016/j.ijms.2024.117276","DOIUrl":null,"url":null,"abstract":"<div><p>Protein-protected metal nanoclusters (MNCs) represent a new class of highly photoluminescent nanomaterials that have wide applications. Suitable reaction conditions combining protein and metal precursors can produce a vast range of different NC sizes (i.e. different number of metal atoms). The average number of metal atoms per protein can be determined by mass spectrometry (MS). MS coupled with matrix-assisted laser desorption ionization (MALDI) presents a number of advantages such as detection with high sensitivity of nanoclusters with high molecular weights. Although many protein-protected MNCs have been characterized by MALDI-MS, a large dispersion in the number of metal atoms has been reported mainly due to sample preparation. In this work, we optimized the protocols for negative and positive ion detection mode as a general MALDI-MS sample preparation method for protein-protected MNCs (bovine serum albumin and lysozyme and with gold and silver). Negative and positive ion mode detection was compared, showing that negative ion mode detection in MALDI-MS can also be used with acidic matrices. Obvious matrix effects on ion signals and peak positions by MALDI-MS were observed. The average metal numbers of MNCs embedded in proteins are different depending on the MALDI matrix. The matrix effects give a warning for more serious consideration on MALDI-MS measurement and spectra analysis of MNCs.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1387380624000873/pdfft?md5=da1673cdc19530b2c19cbb1dc3f0e5c8&pid=1-s2.0-S1387380624000873-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387380624000873","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein-protected metal nanoclusters (MNCs) represent a new class of highly photoluminescent nanomaterials that have wide applications. Suitable reaction conditions combining protein and metal precursors can produce a vast range of different NC sizes (i.e. different number of metal atoms). The average number of metal atoms per protein can be determined by mass spectrometry (MS). MS coupled with matrix-assisted laser desorption ionization (MALDI) presents a number of advantages such as detection with high sensitivity of nanoclusters with high molecular weights. Although many protein-protected MNCs have been characterized by MALDI-MS, a large dispersion in the number of metal atoms has been reported mainly due to sample preparation. In this work, we optimized the protocols for negative and positive ion detection mode as a general MALDI-MS sample preparation method for protein-protected MNCs (bovine serum albumin and lysozyme and with gold and silver). Negative and positive ion mode detection was compared, showing that negative ion mode detection in MALDI-MS can also be used with acidic matrices. Obvious matrix effects on ion signals and peak positions by MALDI-MS were observed. The average metal numbers of MNCs embedded in proteins are different depending on the MALDI matrix. The matrix effects give a warning for more serious consideration on MALDI-MS measurement and spectra analysis of MNCs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.