Marco Campestrini , Stefano Langè , Laura A. Pellegrini , Paolo Stringari
{"title":"Phase behavior of system carbon dioxide + hydrogen sulfide","authors":"Marco Campestrini , Stefano Langè , Laura A. Pellegrini , Paolo Stringari","doi":"10.1016/j.fluid.2024.114154","DOIUrl":null,"url":null,"abstract":"<div><p>The global phase equilibrium behavior of the CO<sub>2</sub>+H<sub>2</sub>S system is discussed in this work for temperatures ranging from 160 K up to the critical region. Solid phases of CO<sub>2</sub> and H<sub>2</sub>S and corresponding equilibria have been modeled by considering either a 4<sup>th</sup>-order equation of state (also used for the fluid phases) or a solid fugacity model for the pure components combined with an activity coefficient model (both coupled with a reference equation of state for the fluid phases).</p><p>Phase equilibrium calculations have been performed by the minimization of the Gibbs Free Energy of mixing and compared to existing literature data.</p><p>The types of pressure-mole fraction phase diagrams that can be encountered in the low-temperature thermodynamic region have been described. The temperature and pressure ranges where the phase behavior of the system changes have been identified and a representative phase diagram is presented for each range.</p></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"585 ","pages":"Article 114154"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224001304","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The global phase equilibrium behavior of the CO2+H2S system is discussed in this work for temperatures ranging from 160 K up to the critical region. Solid phases of CO2 and H2S and corresponding equilibria have been modeled by considering either a 4th-order equation of state (also used for the fluid phases) or a solid fugacity model for the pure components combined with an activity coefficient model (both coupled with a reference equation of state for the fluid phases).
Phase equilibrium calculations have been performed by the minimization of the Gibbs Free Energy of mixing and compared to existing literature data.
The types of pressure-mole fraction phase diagrams that can be encountered in the low-temperature thermodynamic region have been described. The temperature and pressure ranges where the phase behavior of the system changes have been identified and a representative phase diagram is presented for each range.
本研究讨论了 CO2+H2S 系统在 160 K 至临界温度范围内的全局相平衡行为。通过考虑四阶状态方程(也用于流体相)或纯组分的固体逸度模型结合活度系数模型(两者均与流体相的参考状态方程相结合),对 CO2 和 H2S 的固相及相应的平衡进行了建模。确定了系统相态发生变化的温度和压力范围,并为每个范围提供了代表性相图。
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.