Yixing Wang , Qingrui Yue , Xinzheng Lu , Donglian Gu , Zhen Xu , Yuan Tian , Shen Zhang
{"title":"Digital twin approach for enhancing urban resilience: A cycle between virtual space and the real world","authors":"Yixing Wang , Qingrui Yue , Xinzheng Lu , Donglian Gu , Zhen Xu , Yuan Tian , Shen Zhang","doi":"10.1016/j.rcns.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>Construction of disaster-resilient cities has attracted considerable attention. However, traditional methods of studying urban disaster resilience through experimental approaches are often constrained by various limitations, such as testing sites, costs and ethical considerations. To address these constraints, this paper proposes incorporating digital twin concepts into urban disaster resilience research. By establishing a connection between the physical realm of the city and its virtual counterpart, this approach utilizes digital simulations to overcome the limitations of experimental methods and enables dynamic deduction and control of the disaster process. This paper delves into three key aspects encompassing the acquisition of data from reality to the virtual space, disaster simulation within the virtual space, and translation of virtual insights into effective disaster prevention strategies in reality. It provides a comprehensive summary of relevant research endeavors from the authors’ research group and showcases the effectiveness and potential of the proposed techniques. These findings serve as references for pre-disaster planning, real-time emergency assessments, post-disaster rescue operations, and accident investigations for buildings and cities.</p></div>","PeriodicalId":101077,"journal":{"name":"Resilient Cities and Structures","volume":"3 2","pages":"Pages 34-45"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772741624000231/pdfft?md5=acb5c8dda347acc12345c08ef6843bfe&pid=1-s2.0-S2772741624000231-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resilient Cities and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772741624000231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Construction of disaster-resilient cities has attracted considerable attention. However, traditional methods of studying urban disaster resilience through experimental approaches are often constrained by various limitations, such as testing sites, costs and ethical considerations. To address these constraints, this paper proposes incorporating digital twin concepts into urban disaster resilience research. By establishing a connection between the physical realm of the city and its virtual counterpart, this approach utilizes digital simulations to overcome the limitations of experimental methods and enables dynamic deduction and control of the disaster process. This paper delves into three key aspects encompassing the acquisition of data from reality to the virtual space, disaster simulation within the virtual space, and translation of virtual insights into effective disaster prevention strategies in reality. It provides a comprehensive summary of relevant research endeavors from the authors’ research group and showcases the effectiveness and potential of the proposed techniques. These findings serve as references for pre-disaster planning, real-time emergency assessments, post-disaster rescue operations, and accident investigations for buildings and cities.