Advanced Sensors Towards Ubiquitous Power Internet of Things

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS CSEE Journal of Power and Energy Systems Pub Date : 2023-12-28 DOI:10.17775/CSEEJPES.2023.05850
Jinliang He;Zhifei Han;Jun Hu
{"title":"Advanced Sensors Towards Ubiquitous Power Internet of Things","authors":"Jinliang He;Zhifei Han;Jun Hu","doi":"10.17775/CSEEJPES.2023.05850","DOIUrl":null,"url":null,"abstract":"The ubiquitous power Internet of Things (UPIoT) uses modern information technology and advanced communication technologies to realize interconnection and human-computer interaction in all aspects of the power system. UPIoT has the characteristics of comprehensive state perception and efficient information processing, and has broad application prospects for transformation of the energy industry. The fundamental facility of the UPIoT is the sensor-based information network. By using advanced sensors, Wireless Sensor Networks (WSNs), and advanced data processing technologies, Internet of Things can be realized in the power system. In this paper, a framework of WSNs based on advanced sensors towards UPIoT is proposed. In addition, the most advanced sensors for UPIoT purposes are reviewed, along with an explanation of how the sensor data obtained in UPIoT is utilized in various scenarios.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 3","pages":"871-890"},"PeriodicalIF":6.9000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375971","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10375971/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The ubiquitous power Internet of Things (UPIoT) uses modern information technology and advanced communication technologies to realize interconnection and human-computer interaction in all aspects of the power system. UPIoT has the characteristics of comprehensive state perception and efficient information processing, and has broad application prospects for transformation of the energy industry. The fundamental facility of the UPIoT is the sensor-based information network. By using advanced sensors, Wireless Sensor Networks (WSNs), and advanced data processing technologies, Internet of Things can be realized in the power system. In this paper, a framework of WSNs based on advanced sensors towards UPIoT is proposed. In addition, the most advanced sensors for UPIoT purposes are reviewed, along with an explanation of how the sensor data obtained in UPIoT is utilized in various scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现无处不在的电力物联网的先进传感器
无处不在的电力物联网(UPIoT)利用现代信息技术和先进通信技术,实现电力系统各环节的互联互通和人机交互。UPIoT 具有状态感知全面、信息处理高效的特点,在能源行业变革中具有广阔的应用前景。UPIoT 的基本设施是基于传感器的信息网络。通过使用先进的传感器、无线传感器网络(WSN)和先进的数据处理技术,可以在电力系统中实现物联网。本文提出了一个基于先进传感器的 WSN 框架,以实现 UPIoT。此外,本文还评述了用于 UPIoT 的最先进传感器,并解释了如何在各种场景中利用 UPIoT 获得的传感器数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.80
自引率
12.70%
发文量
389
审稿时长
26 weeks
期刊介绍: The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.
期刊最新文献
Transient Voltage Support Strategy of Grid-Forming Medium Voltage Photovoltaic Converter in the LCC-HVDC System Front Cover Contents PFL-DSSE: A Personalized Federated Learning Approach for Distribution System State Estimation Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1