Chemical stimulation of geothermal reservoirs using retarded acid systems: current developments and potential directions

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS Geothermal Energy Pub Date : 2024-06-10 DOI:10.1186/s40517-024-00296-4
Jasmin Grifka, Tobias Licha, Thomas Heinze
{"title":"Chemical stimulation of geothermal reservoirs using retarded acid systems: current developments and potential directions","authors":"Jasmin Grifka,&nbsp;Tobias Licha,&nbsp;Thomas Heinze","doi":"10.1186/s40517-024-00296-4","DOIUrl":null,"url":null,"abstract":"<div><p>Stimulation techniques to enhance fluid pathways are an important tool to make geothermal projects economically feasible. So far, hydraulic stimulation is used almost exclusively for reservoir-wide improvement of the permeability, but induced seismicity poses a challenge. Chemical stimulation on the other hand has been limited to the close vicinity of the borehole and has barely been considered for the creation of enhanced geothermal reservoirs. However, retardation mechanisms reducing the chemical reaction rate can be used to increase the radius of the chemical stimulation thus enabling a reservoir-wide enhancement of fluid pathways. In this work, we review the technologies of retardation mechanisms for chemical stimulation in geothermal systems and identify five groups of retardation techniques: (i) causing impaired mobility of the acid, e.g., by gelling agents; (ii) causing an impaired dissociation, e.g., by the in-situ generation of the reactive compounds; (iii) blocking the mineral surface area, e.g., by alternating injections of pad fluids and acids; (iv) reducing the reaction rate constant, e.g., by cooling; and (v) changing the chemical equilibrium through chelating agents. We found that most applications are currently based on the use of impaired dissociation, but present research focuses on the development and application of chelating agents. Most of these retardation techniques are adopted from the hydrocarbon industry, but there are several techniques that have not been applied in the geothermal context so far for various reasons. We identify a distinctive lack of in-depth descriptions of the retardation techniques in various studies—mostly to protect intellectual property. However, in the light of public concern regarding fracking techniques and to independently assess potential environmental hazards, scientific examination of proposed techniques is indispensable.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-024-00296-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-024-00296-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Stimulation techniques to enhance fluid pathways are an important tool to make geothermal projects economically feasible. So far, hydraulic stimulation is used almost exclusively for reservoir-wide improvement of the permeability, but induced seismicity poses a challenge. Chemical stimulation on the other hand has been limited to the close vicinity of the borehole and has barely been considered for the creation of enhanced geothermal reservoirs. However, retardation mechanisms reducing the chemical reaction rate can be used to increase the radius of the chemical stimulation thus enabling a reservoir-wide enhancement of fluid pathways. In this work, we review the technologies of retardation mechanisms for chemical stimulation in geothermal systems and identify five groups of retardation techniques: (i) causing impaired mobility of the acid, e.g., by gelling agents; (ii) causing an impaired dissociation, e.g., by the in-situ generation of the reactive compounds; (iii) blocking the mineral surface area, e.g., by alternating injections of pad fluids and acids; (iv) reducing the reaction rate constant, e.g., by cooling; and (v) changing the chemical equilibrium through chelating agents. We found that most applications are currently based on the use of impaired dissociation, but present research focuses on the development and application of chelating agents. Most of these retardation techniques are adopted from the hydrocarbon industry, but there are several techniques that have not been applied in the geothermal context so far for various reasons. We identify a distinctive lack of in-depth descriptions of the retardation techniques in various studies—mostly to protect intellectual property. However, in the light of public concern regarding fracking techniques and to independently assess potential environmental hazards, scientific examination of proposed techniques is indispensable.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用缓释酸系统对地热储层进行化学刺激:当前发展和潜在方向
提高流体通路的刺激技术是使地热项目具有经济可行性的重要工具。迄今为止,水力刺激几乎完全用于改善整个储层的渗透性,但诱发地震带来了挑战。另一方面,化学刺激法仅限于在井眼附近使用,几乎未被考虑用于创造强化地热储层。然而,降低化学反应速率的延缓机制可用于增加化学刺激的半径,从而实现整个储层流体通道的增强。在这项工作中,我们回顾了地热系统中化学刺激的延缓机制技术,并确定了五组延缓技术:(i) 通过胶凝剂等方式使酸的流动性受损;(ii) 通过原位生成等方式使酸的解离性受损;(iii) 使酸的流动性受损;(iv) 使酸的解离性受损;(v) 使酸的流动性受损、(iii)阻塞矿物表面积,例如通过交替注入填充液和酸;(iv)降低反应速率常数,例如通过冷却;(v)通过螯合剂改变化学平衡。我们发现,目前大多数应用都是基于使用受损的解离,但目前的研究侧重于螯合剂的开发和应用。这些延迟技术大多采用碳氢化合物行业的技术,但有几种技术由于各种原因至今尚未应用于地热领域。在各种研究中,我们发现明显缺乏对缓凝技术的深入描述,这主要是为了保护知识产权。然而,鉴于公众对压裂技术的担忧,为了独立评估潜在的环境危害,对拟议技术进行科学审查是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
期刊最新文献
Feasibility of coaxial deep borehole heat exchangers in southern California Controls of low injectivity caused by interaction of reservoir and clogging processes in a sedimentary geothermal aquifer (Mezőberény, Hungary) Density of pure and mixed NaCl and CaCl2 aqueous solutions at 293 K to 353 K and 0.1 MPa: an integrated comparison of analytical and numerical data Modeling unobserved geothermal structures using a physics-informed neural network with transfer learning of prior knowledge Methods of grout quality measurement in borehole exchangers for heat pumps and their rehabilitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1