{"title":"360° structured light with learned metasurfaces","authors":"Eunsue Choi, Gyeongtae Kim, Jooyeong Yun, Yujin Jeon, Junsuk Rho, Seung-Hwan Baek","doi":"10.1038/s41566-024-01450-x","DOIUrl":null,"url":null,"abstract":"Structured light has proven instrumental in three-dimensional imaging, LiDAR and holographic light projection. Metasurfaces, comprising subwavelength-sized nanostructures, facilitate 180°-field-of-view structured light, circumventing the restricted field of view inherent in traditional optics like diffractive optical elements. However, extant-metasurface-facilitated structured light exhibits sub-optimal performance in downstream tasks, due to heuristic design patterns such as periodic dots that do not consider the objectives of the end application. Here we present 360° structured light, driven by learned metasurfaces. We propose a differentiable framework that encompasses a computationally efficient 180° wave propagation model and a task-specific reconstructor, and exploits both transmission and reflection channels of the metasurface. Leveraging a first-order optimizer within our differentiable framework, we optimize the metasurface design, thereby realizing 360° structured light. We have utilized 360° structured light for holographic light projection and three-dimensional imaging. Specifically, we demonstrate the first 360° light projection of complex patterns, enabled by our propagation model that can be computationally evaluated 50,000× faster than the Rayleigh–Sommerfeld propagation. For three-dimensional imaging, we improve the depth-estimation accuracy by 5.09× in root-mean-square error compared with heuristically designed structured light. Such 360° structured light promises robust 360° imaging and display for robotics, extended-reality systems and human–computer interactions. A single-metasurface-based holographic light projection covering the whole 360° field of view is realized by optimizing the metasurface design through a neural network and applying 360° structured light for holographic light projection and three-dimensional imaging.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"18 8","pages":"848-855"},"PeriodicalIF":32.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-024-01450-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Structured light has proven instrumental in three-dimensional imaging, LiDAR and holographic light projection. Metasurfaces, comprising subwavelength-sized nanostructures, facilitate 180°-field-of-view structured light, circumventing the restricted field of view inherent in traditional optics like diffractive optical elements. However, extant-metasurface-facilitated structured light exhibits sub-optimal performance in downstream tasks, due to heuristic design patterns such as periodic dots that do not consider the objectives of the end application. Here we present 360° structured light, driven by learned metasurfaces. We propose a differentiable framework that encompasses a computationally efficient 180° wave propagation model and a task-specific reconstructor, and exploits both transmission and reflection channels of the metasurface. Leveraging a first-order optimizer within our differentiable framework, we optimize the metasurface design, thereby realizing 360° structured light. We have utilized 360° structured light for holographic light projection and three-dimensional imaging. Specifically, we demonstrate the first 360° light projection of complex patterns, enabled by our propagation model that can be computationally evaluated 50,000× faster than the Rayleigh–Sommerfeld propagation. For three-dimensional imaging, we improve the depth-estimation accuracy by 5.09× in root-mean-square error compared with heuristically designed structured light. Such 360° structured light promises robust 360° imaging and display for robotics, extended-reality systems and human–computer interactions. A single-metasurface-based holographic light projection covering the whole 360° field of view is realized by optimizing the metasurface design through a neural network and applying 360° structured light for holographic light projection and three-dimensional imaging.
期刊介绍:
Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection.
The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays.
In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.