Effects of heat diffusion and turbulence on detonation development of hydrogen/air mixtures under engine-relevant conditions

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Combustion and Flame Pub Date : 2024-06-11 DOI:10.1016/j.combustflame.2024.113554
Jiabo Zhang , Minh Bau Luong , Hong G. Im
{"title":"Effects of heat diffusion and turbulence on detonation development of hydrogen/air mixtures under engine-relevant conditions","authors":"Jiabo Zhang ,&nbsp;Minh Bau Luong ,&nbsp;Hong G. Im","doi":"10.1016/j.combustflame.2024.113554","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of heat diffusion and turbulence on the detonation propensity of a stoichiometric hydrogen/air mixture under representative low- and high-temperature conditions in internal combustion engines are investigated using two- and three-dimensional direct numerical simulations (DNS) with detailed chemistry. Parametric studies are performed by varying the root-mean-square temperature fluctuation, <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, the most energetic length scale of the temperature and velocity fluctuation, <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span>, and the turbulent velocity fluctuation, <span><math><msup><mrow><mi>u</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>. Two non-dimensional parameters, namely the <em>resonance paramete</em>r <span><math><mi>ξ</mi></math></span> and the <em>reactivity parameter</em> <span><math><mi>ɛ</mi></math></span>, are employed to identify ignition modes. The results reveal that the gradient of the temperature field experiences a rapid dissipation prior to the main ignition due to the pronounced effect of heat diffusion, leading to a decrease of the mean <span><math><mover><mrow><mi>ξ</mi></mrow><mo>¯</mo></mover></math></span> and an increase of the mean <span><math><mover><mrow><mi>ɛ</mi></mrow><mo>¯</mo></mover></math></span>, especially at lower initial temperature having a long ignition delay time. Due to the decreased <span><math><mover><mrow><mi>ξ</mi></mrow><mo>¯</mo></mover></math></span> and the increased <span><math><mover><mrow><mi>ɛ</mi></mrow><mo>¯</mo></mover></math></span>, these cases have a weaker detonation propensity — their ignition mode shifts from deflagration to detonation transition (DDT) to spontaneous auto-ignition. Moreover, turbulence with faster mixing time scales, characterized by the ratio of ignition delay time to eddy-turnover time, <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>i</mi><mi>g</mi></mrow></msub><mo>/</mo><msub><mrow><mi>τ</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></math></span>, and larger length scales of <span><math><mrow><msub><mrow><mi>l</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>/</mo><msub><mrow><mi>l</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></math></span> enhances the effect of heat dissipation, which in turn effectively decreases the temperature gradient level, and thus the detonation propensity. These effects of heat diffusion and turbulence on the ignition mode are well-characterized by the newly proposed turbulent Damköhler number, Da<span><math><msub><mrow></mrow><mrow><mi>t</mi></mrow></msub></math></span>, considering the turbulence intensity characterized by both <span><math><mrow><msub><mrow><mi>τ</mi></mrow><mrow><mi>i</mi><mi>g</mi></mrow></msub><mo>/</mo><msub><mrow><mi>τ</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>l</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>/</mo><msub><mrow><mi>l</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></math></span>, which shows good correlation with the transient evolution of <span><math><mover><mrow><mi>ξ</mi></mrow><mo>¯</mo></mover></math></span>, <span><math><mrow><msub><mrow><mover><mrow><mi>ξ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>t</mi></mrow></msub><mo>/</mo><mover><mrow><mi>ξ</mi></mrow><mo>¯</mo></mover></mrow></math></span>. Moreover, by employing the transient <span><math><msub><mrow><mover><mrow><mi>ξ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>t</mi></mrow></msub></math></span>-<span><math><msub><mrow><mover><mrow><mi>ɛ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>t</mi></mrow></msub></math></span> detonation regime diagram, the effects of heat diffusion and turbulence on the detonation propensity of hydrogen/air mixtures are well predicted. For the cases with a lower initial <span><math><mrow><mover><mrow><mi>ξ</mi></mrow><mo>¯</mo></mover><mo>≳</mo><msub><mrow><mover><mrow><mi>ξ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>l</mi></mrow></msub></mrow></math></span>, turbulence effectively reduces <span><math><msub><mrow><mover><mrow><mi>ξ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>t</mi></mrow></msub></math></span>, alleviating the detonation occurrence by shifting the combustion mode from the developing detonation regime towards the spontaneous ignition regime. On the contrary, for the cases with a higher initial <span><math><mrow><mover><mrow><mi>ξ</mi></mrow><mo>¯</mo></mover><mo>≳</mo><msub><mrow><mover><mrow><mi>ξ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>u</mi></mrow></msub></mrow></math></span>, the decrease in <span><math><msub><mrow><mover><mrow><mi>ξ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>t</mi></mrow></msub></math></span> due to turbulence facilitates the occurrence of DDT and ultimately enhances the detonation propensity.</p><p><strong>Novelty and Significance Statement</strong></p><p><span><math><mo>•</mo></math></span> The effects of heat diffusion and turbulence on affecting the detonation propensity of H<sub>2</sub>/air mixture at engine-relevant conditions are systematically analyzed using 2-D and 3-D DNSs with detailed chemistry.</p><p><span><math><mo>•</mo></math></span> By employing the transient detonation peninsula, <span><math><msub><mrow><mover><mrow><mi>ξ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>t</mi></mrow></msub></math></span> - <span><math><msub><mrow><mover><mrow><mi>ɛ</mi></mrow><mo>¯</mo></mover></mrow><mrow><mi>t</mi></mrow></msub></math></span>, which considers the transient thermo-chemical state of the unburned mixture, accurate predictions of the detonation propensity of H<sub>2</sub>/air mixtures are achieved.</p><p><span><math><mo>•</mo></math></span> The turbulent Damköhler number, Da<span><math><msub><mrow></mrow><mrow><mi>t</mi></mrow></msub></math></span>, is introduced to incorporate the influence of turbulent intensity on the reduction of the thermal diffusion timescale. The newly proposed predictive criterion effectively characterizes the transient evolution of <span><math><mover><mrow><mi>ξ</mi></mrow><mo>¯</mo></mover></math></span>, accounting for both heat diffusive and turbulent effects.</p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024002633","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of heat diffusion and turbulence on the detonation propensity of a stoichiometric hydrogen/air mixture under representative low- and high-temperature conditions in internal combustion engines are investigated using two- and three-dimensional direct numerical simulations (DNS) with detailed chemistry. Parametric studies are performed by varying the root-mean-square temperature fluctuation, T, the most energetic length scale of the temperature and velocity fluctuation, lT and le, and the turbulent velocity fluctuation, u. Two non-dimensional parameters, namely the resonance parameter ξ and the reactivity parameter ɛ, are employed to identify ignition modes. The results reveal that the gradient of the temperature field experiences a rapid dissipation prior to the main ignition due to the pronounced effect of heat diffusion, leading to a decrease of the mean ξ¯ and an increase of the mean ɛ¯, especially at lower initial temperature having a long ignition delay time. Due to the decreased ξ¯ and the increased ɛ¯, these cases have a weaker detonation propensity — their ignition mode shifts from deflagration to detonation transition (DDT) to spontaneous auto-ignition. Moreover, turbulence with faster mixing time scales, characterized by the ratio of ignition delay time to eddy-turnover time, τig/τt, and larger length scales of le/lT enhances the effect of heat dissipation, which in turn effectively decreases the temperature gradient level, and thus the detonation propensity. These effects of heat diffusion and turbulence on the ignition mode are well-characterized by the newly proposed turbulent Damköhler number, Dat, considering the turbulence intensity characterized by both τig/τt and le/lT, which shows good correlation with the transient evolution of ξ¯, ξ¯t/ξ¯. Moreover, by employing the transient ξ¯t-ɛ¯t detonation regime diagram, the effects of heat diffusion and turbulence on the detonation propensity of hydrogen/air mixtures are well predicted. For the cases with a lower initial ξ¯ξ¯l, turbulence effectively reduces ξ¯t, alleviating the detonation occurrence by shifting the combustion mode from the developing detonation regime towards the spontaneous ignition regime. On the contrary, for the cases with a higher initial ξ¯ξ¯u, the decrease in ξ¯t due to turbulence facilitates the occurrence of DDT and ultimately enhances the detonation propensity.

Novelty and Significance Statement

The effects of heat diffusion and turbulence on affecting the detonation propensity of H2/air mixture at engine-relevant conditions are systematically analyzed using 2-D and 3-D DNSs with detailed chemistry.

By employing the transient detonation peninsula, ξ¯t - ɛ¯t, which considers the transient thermo-chemical state of the unburned mixture, accurate predictions of the detonation propensity of H2/air mixtures are achieved.

The turbulent Damköhler number, Dat, is introduced to incorporate the influence of turbulent intensity on the reduction of the thermal diffusion timescale. The newly proposed predictive criterion effectively characterizes the transient evolution of ξ¯, accounting for both heat diffusive and turbulent effects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热扩散和湍流对发动机相关条件下氢气/空气混合物爆燃发展的影响
利用二维和三维直接数值模拟(DNS)和详细的化学模拟,研究了内燃机中具有代表性的低温和高温条件下热扩散和湍流对化学计量氢气/空气混合物引爆倾向的影响。参数研究是通过改变均方根温度波动 T′、温度和速度波动的最大能量长度尺度 lT 和 le 以及湍流速度波动 u′来进行的。利用两个非维度参数,即共振参数ξ和反应性参数ɛ,来确定点火模式。结果表明,由于热扩散效应明显,温度场梯度在主点火前迅速消散,导致平均ξ¯减小,平均ɛ¯增大,尤其是在初始温度较低,点火延迟时间较长的情况下。由于ξ¯减小和ɛ¯增大,这些情况的起爆倾向较弱--其点火模式从爆燃到起爆过渡(DDT)转变为自发自燃。此外,混合时间尺度较快的湍流(以点火延迟时间与涡旋翻转时间之比τig/τt为特征)和长度尺度较大的le/lT会增强散热效果,从而有效降低温度梯度水平,进而降低引爆倾向。考虑到τig/τt和le/lT所表征的湍流强度,新提出的湍流达姆克勒数Dat很好地描述了热扩散和湍流对点火模式的这些影响,它与ξ¯、ξ¯t/ξ¯的瞬态演化有很好的相关性。此外,通过使用瞬态ξ¯t-ɛ¯t起爆机制图,可以很好地预测热扩散和湍流对氢气/空气混合物起爆倾向的影响。对于初始ξ¯≳ξ¯l较低的情况,湍流有效地降低了ξ¯t,通过将燃烧模式从发展中的起爆机制转向自发点火机制,缓解了起爆的发生。相反,对于初始ξ¯≳ξ¯u较高的情况,湍流导致的ξ¯t的降低促进了DDT的发生,并最终增强了爆轰倾向。新颖性和意义声明--利用二维和三维DNS系统分析了发动机相关条件下热扩散和湍流对H2/空气混合物爆轰倾向的影响。- 通过采用考虑未燃烧混合物瞬态热化学状态的瞬态起爆半岛ξ¯t - ɛ¯t,实现了对 H2/air 混合物起爆倾向的精确预测。新提出的预测标准有效地描述了 ξ¯的瞬态演变,同时考虑了热扩散和湍流效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
期刊最新文献
Mechanical and combustion properties of fluoroalkylsilane surface-functionalized boron/HTPB composite Theoretical insights into transient gas and liquid phase effects on the evaporation and autoignition of stationary droplets A well-defined methodology to extract laminar flame speeds at engine-relevant conditions Numerical investigation of sweeping jet actuator on oblique detonation Understanding the synergistic effect in green propellants 2-azido-N,N-dimethylethanamine and tetramethylethylenediamine: From drop test to gas-phase autoignition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1